Abstract

BackgroundWith its genome sequence and other experimental attributes, Populus trichocarpa has become the model species for genomic studies of wood development. Wood is derived from secondary growth of tree stems, and begins with the development of a ring of vascular cambium in the young developing stem. The terminal region of the developing shoot provides a steep developmental gradient from primary to secondary growth that facilitates identification of genes that play specialized functions during each of these phases of growth.ResultsUsing a genomic microarray representing the majority of the transcriptome, we profiled gene expression in stem segments that spanned primary to secondary growth. We found 3,016 genes that were differentially expressed during stem development (Q-value ≤ 0.05; >2-fold expression variation), and 15% of these genes encode proteins with no significant identities to known genes. We identified all gene family members putatively involved in secondary growth for carbohydrate active enzymes, tubulins, actins, actin depolymerizing factors, fasciclin-like AGPs, and vascular development-associated transcription factors. Almost 70% of expressed transcription factors were upregulated during the transition to secondary growth. The primary shoot elongation region of the stem contained specific carbohydrate active enzyme and expansin family members that are likely to function in primary cell wall synthesis and modification. Genes involved in plant defense and protective functions were also dominant in the primary growth region.ConclusionOur results describe the global patterns of gene expression that occur during the transition from primary to secondary stem growth. We were able to identify three major patterns of gene expression and over-represented gene ontology categories during stem development. The new regulatory factors and cell wall biogenesis genes that we identified provide candidate genes for further functional characterization, as well as new tools for molecular breeding and biotechnology aimed at improvement of tree growth rate, crown form, and wood quality.

Highlights

  • With its genome sequence and other experimental attributes, Populus trichocarpa has become the model species for genomic studies of wood development

  • IN3 shows the first signs of interfascicular parenchyma cells that differentiate into a full ring of cambium initials, enabling radial secondary stem growth

  • With the development of vascular cambium and secondary growth, stem elongation ceases while the girth of the stem axis continues to increase

Read more

Summary

Introduction

With its genome sequence and other experimental attributes, Populus trichocarpa has become the model species for genomic studies of wood development. The perennial stem growth habit of most tree species is characterized by secondary growth that results in a cumulative increase in girth during each growth cycle This is achieved by cell division activity of the vascular cambium, with subsequent differentiation of secondary xylem towards the inside of the cambium and secondary phloem towards the outside. This coordinated and environmentally responsive program of meristematic differentiation and tissue patterning involves multiple developmental processes with interacting regulatory mechanisms (reviewed in [7,8,4])

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call