Abstract

A considerable number of single nucleotide polymorphisms (SNPs) are required to elucidate genotype-phenotype associations and determine the molecular basis of important traits. In this work, we carried out de novo SNP discovery accounting for both genome duplication and genetic variation from American and European salmon populations. A total of 9736473 nonredundant SNPs were identified across a set of 20 fish by whole-genome sequencing. After applying six bioinformatic filtering steps, 200K SNPs were selected to develop an Affymetrix Axiom(®) myDesign Custom Array. This array was used to genotype 480 fish representing wild and farmed salmon from Europe, North America and Chile. A total of 159099 (79.6%) SNPs were validated as high quality based on clustering properties. A total of 151509 validated SNPs showed a unique position in the genome. When comparing these SNPs against 238572 markers currently available in two other Atlantic salmon arrays, only 4.6% of the SNP overlapped with the panel developed in this study. This novel high-density SNP panel will be very useful for the dissection of economically and ecologically relevant traits, enhancing breeding programmes through genomic selection as well as supporting genetic studies in both wild and farmed populations of Atlantic salmon using high-resolution genomewide information.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.