Abstract
Water is essential for all living organisms. Aquaporin proteins are the major facilitator of water transport activity through cell membranes of plants including soybean. These proteins are diverse in plants and belong to a large major intrinsic (MIP) protein family. In higher plants, MIPs are classified into five subfamilies including plasma membrane intrinsic proteins (PIP), tonoplast intrinsic proteins (TIP), NOD26-like intrinsic proteins (NIP), small basic intrinsic proteins (SIP), and the recently discovered X intrinsic proteins (XIP). This paper reports genome wide assembly of soybean MIPs, their functional prediction and expression analysis. Using a bioinformatic homology search, 66 GmMIPs were identified in the soybean genome. Phylogenetic analysis of amino acid sequences of GmMIPs divided the large and highly similar multi-gene family into 5 subfamilies: GmPIPs, GmTIPs, GmNIPs, GmSIPs and GmXIPs. GmPIPs consisted of 22 genes and GmTIPs 23, which showed high sequence similarity within subfamilies. GmNIPs contained 13 and GmSIPs 6 members which were diverse. In addition, we also identified a two member GmXIP, a distinct 5th subfamily. GmMIPs were further classified into twelve subgroups based on substrate selectivity filter analysis. Expression analyses were performed for a selected set of GmMIPs using semi-quantitative reverse transcription (semi-RT-qPCR) and qPCR. Our results suggested that many GmMIPs have high sequence similarity but diverse roles as evidenced by analysis of sequences and their expression. It can be speculated that GmMIPs contains true aquaporins, glyceroporins, aquaglyceroporins and mixed transport facilitators.
Highlights
Water is essential for all living organisms
The unclassified major intrinsic proteins (MIPs) were classified into different isoforms by comparing the phylogenetic relationship of their putative protein sequences with clearly classified MIPs from soybean and Arabidopsis downloaded from http://www
By mining the database of soybean MIPs, we identified 66 different GmMIPs (Table 1)
Summary
Plant growth and development depends on water uptake and transport regulation across cellular membranes and tissues. The first aquaporin gene (AQP1) was identified from human erythrocytes [1], and NOD26 from nitrogen-fixating symbiosomes in root nodules of soybean plants [2]. Since their discovery, many studies have indicated that aquaporins provide an important selective pathway for water transport across cellular membranes and they have changed our understanding of water flow regulation in plants under different physiological conditions [3,4,5]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.