Abstract

The protozoan Trypanosoma cruzi is the etiologic agent of Chagas disease, an infection that afflicts approximately 8 million people in Latin America. Diagnosis of chronic Chagas disease is currently based on serological tests because this condition is usually characterized by high anti-T. cruzi IgG titers and low parasitemia. The antigens used in these assays may have low specificity due to cross reactivity with antigens from related parasite infections, such as leishmaniasis, and low sensitivity caused by the high polymorphism among T. cruzi strains. Therefore, the identification of new T. cruzi-specific antigens that are conserved among the various parasite discrete typing units (DTUs) is still required. In the present study, we have explored the hybrid nature of the T. cruzi CL Brener strain using a broad genome screening approach to select new T. cruzi antigens that are conserved among the different parasite DTUs and that are absent in other trypanosomatid species. Peptide arrays containing the conserved antigens with the highest epitope prediction scores were synthesized, and the reactivity of the peptides were tested by immunoblot using sera from C57BL/6 mice chronically infected with T. cruzi strains from the TcI, TcII or TcVI DTU. The two T. cruzi proteins that contained the most promising peptides were expressed as recombinant proteins and tested in ELISA experiments with sera from chagasic patients with distinct clinical manifestations: those infected with T. cruzi from different DTUs and those with cutaneous or visceral leishmaniasis. These proteins, named rTc_11623.20 and rTc_N_10421.310, exhibited 94.83 and 89.66% sensitivity, 98.2 and 94.6% specificity, respectively, and a pool of these 2 proteins exhibited 96.55% sensitivity and 98.18% specificity. This work led to the identification of two new antigens with great potential application in the diagnosis of chronic Chagas disease.

Highlights

  • The protozoan Trypanosoma cruzi is the etiologic agent of Chagas disease, an infection that afflicts 8 million people in Latin America, causes high morbidity and accounts for 662,000 disability-adjusted life years (DALYs) [1,2,3,4]

  • We have explored the hybrid nature of the CL Brener strain using a broad genome screening approach to select new T. cruzi antigens that are potentially conserved among the different parasite discrete typing units (DTUs) and that are absent in other trypanosomatid species

  • To correctly diagnose patients with chronic Chagas disease, identifying antigens that are conserved among parasite strains but do not cross-react with sera from individuals infected with related parasites, such as T. rangeli and Leishmania species, is imperative

Read more

Summary

Introduction

The protozoan Trypanosoma cruzi is the etiologic agent of Chagas disease, an infection that afflicts 8 million people in Latin America, causes high morbidity and accounts for 662,000 disability-adjusted life years (DALYs) [1,2,3,4]. Immigration and travel of chagasic patients to non-endemic countries, such as the US [5], Australia and Spain [6], has spread this infection worldwide [7,8], highlighting other important transmission routes, such as blood transfusion, congenital transmission and organ transplantation [7,8]. These alternative transmission routes have gained importance in endemic countries where vector-borne transmission has been controlled [2,9]. Chronic Chagas disease is asymptomatic in 70% of the patients but evolves into cardiac, digestive or mixed clinical forms in 30% of cases [10,11,12]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call