Abstract

BackgroundPatterns of homozygosity can be influenced by several factors, such as demography, recombination, and selection. Using the goat SNP50 BeadChip, we genotyped 3171 goats belonging to 117 populations with a worldwide distribution. Our objectives were to characterize the number and length of runs of homozygosity (ROH) and to detect ROH hotspots in order to gain new insights into the consequences of neutral and selection processes on the genome-wide homozygosity patterns of goats.ResultsThe proportion of the goat genome covered by ROH is, in general, less than 15% with an inverse relationship between ROH length and frequency i.e. short ROH (< 3 Mb) are the most frequent ones. Our data also indicate that ~ 60% of the breeds display low FROH coefficients (< 0.10), while ~ 30 and ~ 10% of the goat populations show moderate (0.10 < FROH < 0.20) or high (> 0.20) FROH values. For populations from Asia, the average number of ROH is smaller and their coverage is lower in goats from the Near East than in goats from Central Asia, which is consistent with the role of the Fertile Crescent as the primary centre of goat domestication. We also observed that local breeds with small population sizes tend to have a larger fraction of the genome covered by ROH compared to breeds with tens or hundreds of thousands of individuals. Five regions on three goat chromosomes i.e. 11, 12 and 18, contain ROH hotspots that overlap with signatures of selection.ConclusionsPatterns of homozygosity (average number of ROH of 77 and genome coverage of 248 Mb; FROH < 0.15) are similar in goats from different geographic areas. The increased homozygosity in local breeds is the consequence of their small population size and geographic isolation as well as of founder effects and recent inbreeding. The existence of three ROH hotspots that co-localize with signatures of selection demonstrates that selection has also played an important role in increasing the homozygosity of specific regions in the goat genome. Finally, most of the goat breeds analysed in this work display low levels of homozygosity, which is favourable for their genetic management and viability.

Highlights

  • Patterns of homozygosity can be influenced by several factors, such as demography, recombination, and selection

  • Calculation of FROH values in goat breeds The average fraction of the genome that contains runs of homozygosity (ROH) in each analyzed breed is provided in Additional file 2: Figure S1 and Additional file 1: Table S2

  • It is interesting to note that several of the caprine populations with the highest FROH values are raised on islands and have undergone prolonged geographic isolation, and this is further discussed in an accompanying paper [27]

Read more

Summary

Introduction

Patterns of homozygosity can be influenced by several factors, such as demography, recombination, and selection. Our objectives were to characterize the number and length of runs of homozygosity (ROH) and to detect ROH hotspots in order to gain new insights into the consequences of neutral and selection processes on the genome-wide homozygosity patterns of goats. Runs of homozygosity (ROH) can be defined as genomic regions that display a series of consecutive homozygous genotypes [1]. Their length and frequency depend on a complex array of factors including demography, recombination, and selection [2]. Regions of low recombination were detected across the sheep genome [7] Selection is another important evolutionary force that can increase homozygosity. Positive selection to improve productive/reproductive traits and maintain breed standards can decrease variability in targeted regions of the genome, and ROH might result from footprints of selection (signatures of selection) [8, 9]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call