Abstract

AbstractAssociation mapping (AM), an alternative method of quantitative trait loci (QTL) discovery, exploits historic linkage disequilibrium (LD) present in natural populations. AM is effective in self-pollinated crops such as Dolichos bean as LD extends over longer genomic distance driven-by low rate of recombination and thereby requiring fewer markers for exploring marker-traits associations. A core set of Dolichos bean germplasm consisting of 64 accessions was evaluated for nine quantitative traits (QTs) during 2014 and 2015 rainy seasons and genotyped using 234 simple sequence repeats (SSR) markers. Substantial diversity was observed among the core set accessions at loci controlling QTs and 95 of the 234 SSR markers were found polymorphic. The structure analysis and low magnitude of fixation indices suggested weak population structure, which in-turn indicated the low possibility of false discovery rates in the marker-QTs association. The marker allele's scores were regressed onto phenotypes at nine QTs following general linear model and mixed linear model for exploring marker-QTs associations. Significantly higher number of SSR markers was found associated with genomic regions controlling nine QTs. A few of the markers such as KT Dolichos (KTD) 200 for days to 50% flowering, KTD 273 for fresh pod yield per plant and KTD 130 for fresh pods per plant explained ≥10% of the trait variations. The study could also identify a few SSR markers such as KTD 273, KTD 271 and KTD 130 linked to multiple traits. These linked SSR markers are suggested for validation for their use in marker-assisted Dolichos bean improvement programmes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call