Abstract

BackgroundGenetic introgression between divergent lineages is now considered more common than previously appreciated, with potentially important consequences for adaptation and speciation. Introgression is often asymmetric between populations and patterns can vary for different types of loci (nuclear vs. organellar), complicating phylogeographic reconstruction. The taxonomy of the ecologically specialized Abert’s squirrel species group has been controversial, and previous studies based on mitochondrial data have not fully resolved the evolutionary relationships among populations. Moreover, while these studies identified potential areas of secondary contact between divergent lineages, the possibility for introgression has not been tested.ResultsWe used RAD-seq to unravel the complex evolutionary history of the Abert’s squirrel species group. Although some of our findings reinforce inferences based on mitochondrial data, we also find significant areas of discordance. Discordant signals generally arise from previously undetected introgression between divergent populations that differentially affected variation at mitochondrial and nuclear loci. Most notably, our results support earlier claims (disputed by mitochondrial data) that S. aberti kaibabensis, found only on the north rim of the Grand Canyon, is highly divergent from other populations. However, we also detected introgression of S. aberti kaibabensis DNA into other S. aberti populations, which likely accounts for the previously inferred close genetic relationship between this population and those south of the Grand Canyon.ConclusionsOverall, the evolutionary history of Abert’s squirrels appears to be shaped largely by divergence during periods of habitat isolation. However, we also found evidence for interbreeding during periods of secondary contact resulting in introgression, with variable effects on mitochondrial and nuclear markers. Our results support the emerging view that populations often diversify under scenarios involving both divergence in isolation and gene flow during secondary contact, and highlight the value of genome-wide datasets for resolving such complex evolutionary histories.

Highlights

  • Genetic introgression between divergent lineages is considered more common than previously appreciated, with potentially important consequences for adaptation and speciation

  • The largest values were between S. aberti kaibabensis and all other populations, and S. aberti barberi and all other populations

  • The lowest value was between S. aberti ferreus from San Juan and Carson-SFW (0.098) and the highest values were between the S. aberti chuscensis groups and S. aberti aberti from San Juan (0.431 and 0.383)

Read more

Summary

Introduction

Genetic introgression between divergent lineages is considered more common than previously appreciated, with potentially important consequences for adaptation and speciation. The taxonomy of the ecologically specialized Abert’s squirrel species group has been controversial, and previous studies based on mitochondrial data have not fully resolved the evolutionary relationships among populations While these studies identified potential areas of secondary contact between divergent lineages, the possibility for introgression has not been tested. The inclusion of nuclear loci has become more common, with the advent of next-generation sequencing technologies that enable genome-wide sampling [7,8,9]. As more such datasets are generated, discordance between mitochondrial and nuclear genomes has been detected with increasing regularity [3]. Complete mitochondrial capture could be explained by positive selection on favorable mitochondrial haplotypes or genetic drift coupled with specific demographic scenarios such as range expansion or sex-related asymmetries in gene flow [3, 11, 13, 14]

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.