Abstract

Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most destructive diseases of wheat in the world. Genetic resistance is the best strategy for control of the disease. Spring wheat landrace PI 181410 has shown high level resistance to stripe rust. The present study characterized the landrace to have both race-specific all-stage resistance and nonrace-specific high-temperature adult-plant (HTAP) resistance. To map quantitative trait loci (QTL) for the resistance in PI 181410, it was crossed with Avocet S (AvS), from which a recombinant inbred line population was developed. The F5–F8 populations were consecutively phenotyped for stripe rust response in multiple field environments under natural Pst infection, and the F7 population was phenotyped in seedlings at low temperature and in adult-plant stage with selected Pst races in the greenhouse. The F7 population was genotyped using the 90K wheat SNP chip. Three QTL, QYrPI181410.wgp-4AS, QYrPI181410.wgp-4BL, and QYrPI181410.wgp-5BL.1, from PI 181410 for all-stage resistance, were mapped on chromosome arms 4AS, 4BL, and 5BL, respectively. Four QTL, QYrPI181410.wgp-1BL, QYrPI181410.wgp-4BL, QYrPI181410.wgp-5AS, and QYrPI181410.wgp-5BL.2, were identified from PI 181410 for HTAP resistance and mapped to 1BL, 4BL, 5AS, and 5BL, respectively. Two QTL with minor effects on stripe rust response were identified from AvS and mapped to 2BS and 2BL. Four of the QTL from PI 181410 and one from AvS were potentially new. As the 4BL QTL was most effective and likely a new gene for stripe rust resistance, three kompetitive allele specific PCR (KASP) markers were developed for incorporating this gene into new wheat cultivars.

Highlights

  • Wheat (Triticum aestivum L.) is one of the most important food crops worldwide, as it provides humans most of their daily calories and proteins

  • In addition to the quantitative trait loci (QTL) on 4AS, we identified three more QTL, designated as QYrPI181410.wgp-1BL, QYrPI181410.wgp-5AS, and QYrPI181410.wgp-5BL.2 in PI 181410 conferring resistance observed at the adult-plant stage in the fields

  • As QYrPI181410.wgp-4BL is the most useful among the QTL detected in the present study, we developed three Kompetitive Allele Specific PCR (KASP) markers for this QTL

Read more

Summary

Introduction

Wheat (Triticum aestivum L.) is one of the most important food crops worldwide, as it provides humans most of their daily calories and proteins. Growing resistant cultivars and application of fungicides are two major approaches for control of stripe rust. Growing resistant cultivars does not have these problems, but is easy to use, efficient, and more effective for control of stripe rust [6,7]. Resistant cultivars may become susceptible to new virulent races of the pathogen or the resistance level may not be adequate when the disease is severe. These problems can be solved by developing cultivars with durable, high-level resistance [5]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call