Abstract

Information about linkage disequilibrium (LD) is important in understanding the genome structure and has its applications in association studies. Here we present the first genome-wide LD study based on a founder population (East Finland). The LD data consist of 118 unrelated individuals and around 480,000 SNP pairs genotyped with the Affymetrix 100K genotyping assay. Using the minor allele frequency (MAF) limit of .05, the squared correlation coefficient between two loci (r(2)) was .48, .37, .28, and .20 for distances of 5, 10, 20, and 40 kb respectively. MAF had a significant effect on the mean r(2) so that the extent of useful LD (r(2) > .3) varied from 17 kb to 80 kb depending on the limit set for the MAF. For D' the effect of MAF was smaller but reflected the possible age of the mutation: SNPs with high MAF had lower D' than those with low MAF. The X chromosome showed higher D' values than autosomes and the extent of useful LD (r(2) > .3) was twice as long on the X chromosome than on the autosomes. Based on the results, LD varies across the genome and is correlated to local recombination rate between and within chromosomes. However, the recombination rate does not explain all the variation found in LD. We also report a number of long chromosomal regions where exceptionally high or low LD were detected.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call