Abstract

Superoxide dismutases (SODs), as a family of metalloenzymes related to the removal of reactive oxygen species (ROS), have not previously been investigated at genome-wide level in tea plant. In this study, 10 CsSOD genes were identified in tea plant genome, including 7 Cu/Zn-SODs (CSDs), 2 Fe-SODs (FSDs) and one Mn-SOD (MSD), and phylogenetically classified in three subgroups, respectively. Physico-chemical characteristic, conserved motifs and potential protein interaction analyses about CsSOD proteins were carried out. Exon-intron structures and codon usage bias about CsSOD genes were also examined. Exon-intron structures analysis revealed that different CsSOD genes contained various number of introns. On the basis of the prediction of regulatory miRNAs of CsSODs, a modification 5’ RNA ligase-mediated (RLM)-RACE was performed and validated that csn-miR398a-3p-1 directly cleaves CsCSD4. By prediction of cis-acting elements, the expression patterns of 10 CsSOD genes and their regulatory miRNAs were detected under cold, drought, exogenous methyl jasmonate (MeJA) and gibberellin (GA3) treatments. The results showed that most of CsSODs except for CsFSD2 were induced under cold stress and CsCSDs may play primary roles under drought stress; exogenous GA3 and MeJA could also stimulated/inhibited distinct CsSODs at different stages. In addition, we found that csn-miR398a-3p-1 negatively regulated the expression of CsCSD4 may be a crucial regulatory mechanism under cold stress. This study provides a certain basis for the studies about stress resistance in tea plants, even provide insight into comprehending the classification, evolution, diverse functions and influencing factors of expression patterns for CsSOD genes.

Highlights

  • Tea plant (Camellia sinensis) is an important commercial crop and has been cultivated for more than 2000 years in China [1]

  • We searching the tea plant genome database using Pfam identifiers of CSD domain (PF00080) and FSD / MSD domain. Both FSD and MSD had the FSD/MSD N-terminal domain (PF00081) and the FSD/MSD C-terminal domain (PF02777). We both ascertained a total of 10 Superoxide dismutases (SODs) genes in two tea plant genomes, of which, 7 members belong to CSDs, 2 members belong to FSDs, and only one

  • On the basis of cis-acting elements, the expression profiles of CsSOD genes were detected by quantitative real-time polymerase chain reaction (qRT-PCR) under cold, drought, exogenous GA3 and methyl jasmonate (MeJA) treatments

Read more

Summary

Introduction

Tea plant (Camellia sinensis) is an important commercial crop and has been cultivated for more than 2000 years in China [1]. SOD plays an important role in scavenging ROS and maintaining the balance of active oxygen via catalyzes the conversion or dismutation of toxic superoxide anion radicals to synthesize O2 and H2O2 in plants [10]. In A. thaliana, the transcription and translation level of SOD genes increased significantly after subjected to oxidative stress [12]; in G. hirsutum, under drought stress, the expression of three types of SOD genes was significantly up-regulated; but under cold stress, only the expression of CSD genes were increased, and the photosynthetic rate and soluble sugar were increased [25]; after transfer MSD gene from pea into rice, the drought tolerance was significant enhanced and exhibited less injury [26]; in tea plant, under the cold stress, the content of ROS was higher together with lower SOD activity, and the leaf damage was more serious in the cold-sensitive cultivar compared to the cold-resistant cultivar [27]. Increasing the activity of SOD is one of the effective ways for plants to resist a series of abiotic stress

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call