Abstract
We used mouse hepatic chromatin enriched with an FXR antibody and chromatin immunoprecipitation-sequencing (ChIP-seq) to evaluate FXR binding on a genome-wide scale. This identified 1656 FXR-binding sites and 10% were located within 2 kb of a transcription start site which is much higher than predicted by random occurrence. A motif search uncovered a canonical nuclear receptor IR-1 site, consistent with in vitro DNA-binding studies reported previously. A separate nuclear receptor half-site for monomeric receptors such as LRH-1 was co-enriched and FXR activation of four newly identified promoters was significantly augmented by an LRH-1 expression vector in a co-transfection assay. There were 1038 genes located within 20 kb of a peak and a gene set enrichment analysis showed that genes identified by our ChIP-seq analysis are highly correlated with genes activated by an FXR-VP16 adenovirus in primary mouse hepatocytes providing functional relevance to the genome-wide binding study. Gene Ontology analysis showed FXR-binding sites close to many genes in lipid, fatty acid and steroid metabolism. Other broad gene clusters related to metabolism, transport, signaling and glycolysis were also significantly enriched. Thus, FXR may have a much wider role in cellular metabolism than previously appreciated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.