Abstract

BackgroundDifferential RNA-Seq (dRNA-Seq) is a recently developed method of performing primary transcriptome analyses that allows for the genome-wide mapping of transcriptional start sites (TSSs) and the identification of novel transcripts. Although the transcriptomes of diverse bacterial species have been characterized by dRNA-Seq, the transcriptome analysis of archaeal species is still rather limited. Therefore, we used dRNA-Seq to characterize the primary transcriptome of the model archaeon Haloferax volcanii.ResultsThree independent cultures of Hfx. volcanii grown under optimal conditions to the mid-exponential growth phase were used to determine the primary transcriptome and map the 5′-ends of the transcripts. In total, 4749 potential TSSs were detected. A position weight matrix (PWM) was derived for the promoter predictions, and the results showed that 64 % of the TSSs were preceded by stringent or relaxed basal promoters. Of the identified TSSs, 1851 belonged to protein-coding genes. Thus, fewer than half (46 %) of the 4040 protein-coding genes were expressed under optimal growth conditions. Seventy-two percent of all protein-coding transcripts were leaderless, which emphasized that this pathway is the major pathway for translation initiation in haloarchaea. A total of 2898 of the TSSs belonged to potential non-coding RNAs, which accounted for an unexpectedly high fraction (61 %) of all transcripts. Most of the non-coding TSSs had not been previously described (2792) and represented novel sequences (59 % of all TSSs). A large fraction of the potential novel non-coding transcripts were cis-antisense RNAs (1244 aTSSs). A strong negative correlation between the levels of antisense transcripts and cognate sense mRNAs was found, which suggested that the negative regulation of gene expression via antisense RNAs may play an important role in haloarchaea. The other types of novel non-coding transcripts corresponded to internal transcripts overlapping with mRNAs (1153 iTSSs) and intergenic small RNA (sRNA) candidates (395 TSSs).ConclusionThis study provides a comprehensive map of the primary transcriptome of Hfx. volcanii grown under optimal conditions. Fewer than half of all protein-coding genes have been transcribed under these conditions. Unexpectedly, more than half of the detected TSSs belonged to several classes of non-coding RNAs. Thus, RNA-based regulation appears to play a more important role in haloarchaea than previously anticipated.Electronic supplementary materialThe online version of this article (doi:10.1186/s12864-016-2920-y) contains supplementary material, which is available to authorized users.

Highlights

  • Differential RNA-Seq is a recently developed method of performing primary transcriptome analyses that allows for the genome-wide mapping of transcriptional start sites (TSSs) and the identification of novel transcripts

  • Results and discussion dRNA-Seq and classification of TSSs To globally identify TSSs in Hfx. volcanii, dRNA-Seq was performed using Hfx. volcanii cultures grown to the mid-exponential growth phase under optimal conditions

  • The scarcity of 5′-untranslated region (UTR) in Hfx. volcanii identified in the present study indicated that translational control requiring structured leaders is not typical in haloarchaea and that alternative mechanisms potentially based on 3′-UTRs might prevail

Read more

Summary

Introduction

Differential RNA-Seq (dRNA-Seq) is a recently developed method of performing primary transcriptome analyses that allows for the genome-wide mapping of transcriptional start sites (TSSs) and the identification of novel transcripts. The transcriptomes of diverse bacterial species have been characterized by dRNA-Seq, the transcriptome analysis of archaeal species is still rather limited. We used dRNA-Seq to characterize the primary transcriptome of the model archaeon Haloferax volcanii. A transcriptome, by definition, encompasses the complete set of RNA within an organism. The application of high-throughput sequencing for the analysis of cDNA libraries (RNA-Seq) and specialized variants has enabled a comprehensive overview of bacterial and archaeal transcriptomes and led to the discovery of many new sRNAs in all studied species [5,6,7,8]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call