Abstract

MicroRNAs (miRNAs) are recognized as essential transcriptional or post-transcriptional regulators, and play versatile roles in plants growth, development and stress responses. Cassava (Manihot esculenta) is a major root crop widely grown worldwide. Cold stress seriously affects cassava plants growth, development and yield. MiRNAs and their targets have been extensively studied in model plants, but a genome-wide identification of miRNAs’ targets is still lacking in cassava. In this study, two degradome libraries were constructed using cold-treated and control cassava seedlings to identify the roles of miRNAs and their targets in response to cold stress. Following high-throughput sequencing and comparing with miRNA database, degradome data allowed us to identify a total of 151 non-redundant miRNA-target pairs. We revealed that ~ 42% of miRNA targets are conserved across plant species. However, 83 novel miRNA targets were identified in the two libraries. Gene ontology analyses showed that many target genes involved in cellular and metabolic process. In addition, 12 miRNAs and 31 corresponding targets of them were further found to be involved in cold stress response. Particularly, miR159, 164 and 396 participated in cold stress response by up-regulating certain transcription factors that were involved in the regulation of downstream gene expression. The work helps identifing cold-responsive miRNA targets in cassava and increases the number of novel targets involved in cold stress response. Furthermore, the findings of this study might provide valuable reference and new insights for understanding the functions of miRNA in stress response in plants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call