Abstract

BackgroundLong noncoding RNAs (lncRNAs) play an important role in the multiple differentiations of mesenchymal stem cells (MSCs). However, few studies have focused on the regulatory mechanism of lncRNAs in the odontogenic differentiation of human dental pulp stem cells (hDPSCs).MethodshDPSCs were induced to differentiate into odontoblasts in vitro, and the expression profiles of lncRNAs, microRNAs (miRNAs), and messenger RNAs (mRNAs) in differentiated and undifferentiated cells were obtained by microarray. Bioinformatics analyses including Gene Ontology (GO) analysis, pathway analysis, and binding site prediction were performed for functional annotation of lncRNA. miRNA/odontogenesis-related gene networks and lncRNA-associated ceRNA networks were constructed. Quantitative reverse-transcription polymerase chain reaction (qRT-PCR) was used to verify the expression of selected genes. RNA fluorescence in situ hybridization (FISH), qRT-PCR, and western blot analysis were used to explore the location and function of lncRNA-G043225. Dual-luciferase reporter assay was performed to confirm the binding sites of miR-588 with G043225 and Fibrillin 1 (FBN1).ResultsWe identified 132 lncRNAs, 114 miRNAs, and 172 mRNAs were differentially expressed. GO analysis demonstrated that regulation of the neurogenic locus notch homolog (Notch), Wnt, and epidermal growth factor receptor (ERBB) signaling pathways and activation of mitogen-activated protein kinase (MAPK) activity were related to odontogenic differentiation. Pathway analysis indicated that the most significant pathway was the forkhead box O (FoxO) signaling pathway, which is related to odontogenic differentiation. Two odontogenesis-related gene-centered lncRNA-associated ceRNA networks were successfully constructed. The qRT-PCR validation results were consistent with the microarray analysis. G043225 mainly locating in cytoplasm was proved to promote the odontogenic differentiation of hDPSCs via miR-588 and FBN1.ConclusionThis is the first study revealing lncRNA-associated ceRNA network during odontogenic differentiation of hDPSCs using microarray, and it could provide clues to explore the mechanism of action at the RNA-RNA level as well as novel treatments for dentin regeneration based on stem cells.

Highlights

  • Long noncoding RNAs play an important role in the multiple differentiations of mesenchymal stem cells (MSCs)

  • Chen et al Stem Cell Research & Therapy (2020) 11:114 (Continued from previous page). This is the first study revealing Long noncoding RNAs (lncRNAs)-associated competing endogenous RNA (ceRNA) network during odontogenic differentiation of human dental pulp stem cells (hDPSCs) using microarray, and it could provide clues to explore the mechanism of action at the RNA-RNA level as well as novel treatments for dentin regeneration based on stem cells

  • Due to their capability to differentiate into odontoblasts, hDPSCs play an important role in dentin repair and regeneration, which provides a new approach for regeneration treatment of dental tissue in clinical applications [9, 10]

Read more

Summary

Methods

HDPSCs were induced to differentiate into odontoblasts in vitro, and the expression profiles of lncRNAs, microRNAs (miRNAs), and messenger RNAs (mRNAs) in differentiated and undifferentiated cells were obtained by microarray. Bioinformatics analyses including Gene Ontology (GO) analysis, pathway analysis, and binding site prediction were performed for functional annotation of lncRNA. HDPSC isolation, culture, and identification Healthy premolars were extracted from 19 healthy adults (8 males and 11 females, aged from 15 to 25 years old, mean age 19.7) who were undergoing orthodontic treatment at the Department of Stomatology, Nanfang Hospital, Southern Medical University. Written informed consent was obtained from all adult patients. Statement on informed consent was obtained from their parents. Limited dilution techniques were used to obtain colonies of single-cell origin [24]

Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call