Abstract

BackgroundAlternate bearing is a widespread phenomenon among crop plants, defined as the tendency of certain fruit trees to produce a high-yield crop one year ("on-year"), followed by a low-yield or even no crop the following year ("off-year"). Several factors may affect the balance between such developmental phase-transition processes. Among them are the microRNA (miRNA), being gene-expression regulators that have been found to be involved as key determinants in several physiological processes.ResultsSix olive (Olea europaea L. cv. Ayvalik variety) small RNA libraries were constructed from fruits (ripe and unripe) and leaves (”on year” and ”off year” leaves in July and in November, respectively) and sequenced by high-throughput Illumina sequencing. The RNA was retrotranscribed and sequenced using the high-throughput Illumina platform. Bioinformatics analyses of 93,526,915 reads identified 135 conserved miRNA, belonging to 22 miRNA families in the olive. In addition, 38 putative novel miRNAs were discovered in the datasets. Expression of olive tree miRNAs varied greatly among the six libraries, indicating the contribution of diverse miRNA in balancing between reproductive and vegetative phases. Predicted targets of miRNA were categorized into 108 process ontology groups with significance abundance. Among those, potential alternate bearing-associated processes were found, such as development, hormone-mediated signaling and organ morphogenesis. The KEGG analyses revealed that the miRNA-targeted genes are involved in seven main pathways, belonging to carbohydrate metabolism and hormone signal-transduction pathways.ConclusionA comprehensive study on olive miRNA related to alternate bearing was performed. Regulation of miRNA under different developmental phases and tissues indicated that control of nutrition and hormone, together with flowering processes had a noteworthy impact on the olive tree alternate bearing. Our results also provide significant data on the miRNA-fruit development interaction and advance perspectives in the miRNA profile of the olive tree.

Highlights

  • Alternate bearing is a widespread phenomenon among crop plants, defined as the tendency of certain fruit trees to produce a high-yield crop one year ("on-year"), followed by a low-yield or even no crop the following year ("off-year")

  • Small RNA sequencing In order to determine responsive sRNAs for alternate bearing, six small RNA libraries were constructed from "on-year" and “off year” leaves in July (JON and JOFF, respectively), again in "on-year" and “off year” leaves in November (NON and NOFF, respectively) as well as with ripe (RF) and unripe (UF) fruits

  • Ulger et al [30] reported that some endogenous plant growth hormones like the abscisic acid (ABA), gibberellins like the gibberellic acid (GA3) and auxins like the indole-3acetic acid (IAA) have important roles on the alternate bearing

Read more

Summary

Introduction

Alternate bearing is a widespread phenomenon among crop plants, defined as the tendency of certain fruit trees to produce a high-yield crop one year ("on-year"), followed by a low-yield or even no crop the following year ("off-year"). In addition to its agricultural and dietary values, the olive tree is known for its tendency to bear fruits in an uneven manner (alternate bearing, biennial bearing, uneven bearing or periodicity) [1,2]. This is a well-known pomology phenomenon among crop plants, defined as the tendency of fruit trees to produce a high-yield crop one year ("on-year"), followed by a low-yield or even no crop the following year ("offyear"). Discovering control mechanisms of these transitions is crucial to understand the basis of this tendency

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call