Abstract

AT-hook motif nuclear localized (AHL) genes have diverse but poorly understood biological functions. We identified and analyzed 37 AHL genes in maize. We also discovered four and one additional AHLs in rice and sorghum, respectively, besides those reported earlier. The maize AHLs were classified into two clades (A and B) and three distinct types (I, II, and III) as also reported in Arabidopsis. Phylogenetic and ortholog analyses showed that, while the evolutionary classification was conserved in plants, expansion of the AHL gene family in maize was accompanied with new biological functions. Gene structure analysis showed that, while all but one Type-I AHLs lacked an intron, origin of Type-II and Type-III AHLs was associated with the gain of introns suggesting evolutionarily distinct temporal and spatial expression patterns and, likely, neofunctionalization. Gene duplication analysis revealed that AHLs in maize expanded via dispersive duplication further supporting their functional diversity. To discern these functions, we analyzed 71 transcriptomes from diverse tissues and developmental stages of maize and classified AHLs into eight groups with distinct temporal/spatial expression profiles. Coexpression analysis implicated 5 AHLs and 33 novel genes in networks specific to endosperm, seed, root, leaf, and reproductive tissues indicating their role in the development of these organs. Major processes coregulated by AHLs include pollen development, drought response, senescence, and wound response. We also identified interactions of AHL proteins in coregulating important processes including stress response. These novel insights into the role of AHLs in plant development provide a platform for functional analyses in maize and related grasses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.