Abstract
Iron-sulfur (Fe-S) proteins are ubiquitous in nature and carry Fe-S clusters (ISCs) as prosthetic groups that are essential in maintaining basic biological processes such as photosynthesis, respiration, nitrogen fixation, and DNA repair. In the present investigation, a comprehensive genome-wide analysis was carried out to find all the genes involved in the formation of ISCs in rice ( Oryza sativa L.) through a systematic EST and genomic DNA sequence data mining. This analysis profiled 44 rice ISC genes (OsISCs) that were identified using in silico analysis. Multiple sequence alignment and phylogenetic analysis revealed that these genes were highly conserved among bacteria, fungi, animals, and plants. EST analysis and RT-PCR assays demonstrated that all OsISCs were active and that the transcript abundance of some OsISCs was tissue specific. The results of this study will assist further investigations to identify and elucidate the structural components involved in the assembly, biogenesis, and regulation of OsISCs. Thus, the outcome of the present study provides basic genomic information for the OsISC and will pave the way for elucidating the precise role of OsISCs in plant growth and development in the future. Also, it may enable us in the future to enhance the crop yield, uptake of Fe, and protection against abiotic and biotic stress.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.