Abstract
Lineage-specific genes (LSGs) are defined as genes with sequences that are not significantly similar to those in any other lineage. LSGs have been proposed, and sometimes shown, to have significant effects in the evolution of biological function. In this study, two sets of Hanseniaspora spp. LSGs were identified by comparing the sequences of the Kloeckera apiculata genome and of 80 other yeast genomes. This study identified 344 Hanseniaspora-specific genes (HSGs) and 109 genes ('orphan genes') specific to K. apiculata. Three thousand three hundred thirty-oneK. apiculata genes that showed significant similarity to at least one sequence outside the Hanseniaspora were classified into evolutionarily conserved genes. We analyzed their sequence features, functional categories, gene origin, gene structure and gene expression. We also investigated the predicted cellular roles and Gene Ontology categories of the LSGs using functional inference. The patterns of the functions of LSGs do not deviate significantly from genome-wide average. The results showed that a few LSGs were formed by gene duplication, followed by rapid sequence divergence. Many of the HSGs and orphan genes exhibited altered expression in response to abiotic stress. Studying these LSGs might be helpful for understanding the molecular mechanism of yeast adaption.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.