Abstract

BackgroundSerine proteases (SPs) are crucial proteolytic enzymes responsible for digestion and other processes including signal transduction and immune responses in insects. Serine protease homologs (SPHs) lack catalytic activity but are involved in innate immunity. This study presents a genome-wide investigation of SPs and SPHs in the diamondback moth, Plutella xylostella (L.), a globally-distributed destructive pest of cruciferous crops.ResultsA total of 120 putative SPs and 101 putative SPHs were identified in the P. xylostella genome by bioinformatics analysis. Based on the features of trypsin, 38 SPs were putatively designated as trypsin genes. The distribution, transcription orientation, exon-intron structure and sequence alignments suggested that the majority of trypsin genes evolved from tandem duplications. Among the 221 SP/SPH genes, ten SP and three SPH genes with one or more clip domains were predicted and designated as PxCLIPs. Phylogenetic analysis of CLIPs in P. xylostella, two other Lepidoptera species (Bombyx mori and Manduca sexta), and two more distantly related insects (Drosophila melanogaster and Apis mellifera) showed that seven of the 13 PxCLIPs were clustered with homologs of the Lepidoptera rather than other species. Expression profiling of the P. xylostella SP and SPH genes in different developmental stages and tissues showed diverse expression patterns, suggesting high functional diversity with roles in digestion and development.ConclusionsThis is the first genome-wide investigation on the SP and SPH genes in P. xylostella. The characterized features and profiled expression patterns of the P. xylostella SPs and SPHs suggest their involvement in digestion, development and immunity of this species. Our findings provide a foundation for further research on the functions of this gene family in P. xylostella, and a better understanding of its capacity to rapidly adapt to a wide range of environmental variables including host plants and insecticides.Electronic supplementary materialThe online version of this article (doi:10.1186/s12864-015-2243-4) contains supplementary material, which is available to authorized users.

Highlights

  • Serine proteases (SPs) are crucial proteolytic enzymes responsible for digestion and other processes including signal transduction and immune responses in insects

  • Based on the MEROPS process, the results showed that the majority of serine proteases (SPs)/Serine protease homologs (SPHs) were significantly similar to the chymotrypsin (S1) family

  • According to the presence or absence of the catalytic triad, the 221 putative SP/SPH genes in P. xylostella were divided into 120 SP and 101 SPH genes (Additional file 1: Table S1)

Read more

Summary

Introduction

Serine proteases (SPs) are crucial proteolytic enzymes responsible for digestion and other processes including signal transduction and immune responses in insects. Serine protease homologs (SPHs) lack catalytic activity but are involved in innate immunity. Serine proteases (SPs) represent a very diverse group of proteolytic enzymes involved in digestion, development, and innate immunity [1,2,3,4,5,6]. Clip domains contain six conserved Cys residues with Cys-5 and Cys-6 at adjacent positions, forming three disulfide bonds [8, 9]. They may be involved in mediating protein-protein interactions or for regulating cascades of SP activities [6]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call