Abstract

BackgroundRING-H2 finger E3 ligase (RH2FE3) genes encode cysteine-rich proteins that mediate E3 ubiquitin ligase activity and degrade target substrates. The roles of these genes in plant responses to phytohormones and abiotic stresses are well documented in various species, but their roles in cotton fiber development are poorly understood. To date, genome-wide identification and expression analyses of Gossypium hirsutum RH2FE3 genes have not been reported.MethodsWe performed computational identification, structural and phylogenetic analyses, chromosomal distribution analysis and estimated Ka/Ks values of G. hirsutum RH2FE3 genes. Orthologous and paralogous gene pairs were identified by all-versus-all BLASTP searches. We predicted cis-regulatory elements and analyzed microarray data sets to generate heatmaps at different development stages. Tissue-specific expression in cotton fiber, and hormonal and abiotic stress responses were determined by quantitative real time polymerase chain reaction (qRT-PCR) analysis.ResultsWe investigated 140 G. hirsutum, 80 G. arboreum, and 89 G. raimondii putative RH2FE3 genes and their evolutionary mechanisms and compared them with orthologs in Arabidopsis and rice. A domain-based analysis of the G. hirsutum RH2FE3 genes predicted conserved signature motifs and gene structures. Chromosomal localization showed the genes were distributed across all G. hirsutum chromosomes, and 60 duplication events (4 tandem and 56 segmental duplications) and 98 orthologs were detected. cis-elements were detected in the promoter regions of G. hirsutum RH2FE3 genes. Microarray data and qRT-PCR analyses showed that G. hirsutum RH2FE3 genes were strongly correlated with cotton fiber development. Additionally, almost all the identified genes were up-regulated in response to phytohormones (brassinolide, gibberellic acid (GA), indole-3-acetic acid (IAA), and salicylic acid (SA)) and abiotic stresses (cold, heat, drought, and salt).ConclusionsThe genome-wide identification, comprehensive analysis, and characterization of conserved domains and gene structures, as well as phylogenetic analysis, cis-element prediction, and expression profile analysis of G. hirsutum RH2FE3 genes and their roles in cotton fiber development and responses to plant hormones and abiotic stresses are reported here for the first time. Our findings will contribute to the genome-wide analysis of putative RH2FE3 genes in other species and lay a foundation for future physiological and functional research on G. hirsutum RH2FE3 genes.

Highlights

  • really interesting new genes (RING)-H2 finger E3 ligase (RH2FE3) genes encode cysteine-rich proteins that mediate E3 ubiquitin ligase activity and degrade target substrates

  • We present a comprehensive analysis of RING-H2 finger E3 ligase (RH2FE3) genes in G. hirsutum, including phylogenetic analysis, chromosomal localization, gene structure, conserved motifs, gene duplication and ortholog analysis, cis-acting regulatory element analysis, fiber tissue-specific microarray data analysis, and quantitative real time polymerase chain reaction (qRT-PCR) expression profiling

  • Identification of RH2FE3 genes We confirmed the identity of 79 RH2FE3 genes in Arabidopsis, 106 in rice, and 80, 140, and 89 in G. arboreum, G. hirsutum, and G. raimondii, respectively, using MEME and SMART tools (Additional file 1: Table S2)

Read more

Summary

Introduction

RING-H2 finger E3 ligase (RH2FE3) genes encode cysteine-rich proteins that mediate E3 ubiquitin ligase activity and degrade target substrates. The roles of these genes in plant responses to phytohormones and abiotic stresses are well documented in various species, but their roles in cotton fiber development are poorly understood. Many plant RING-H2 proteins act as E3 ligases by mediating the ubiquitination of target substrates. E3 ligases together with two other proteins, Ub-activating enzyme (E1) and Ub-conjugating enzyme (E2), catalyze the attachment of Ub to the target substrate in a specific fashion (Sadanandom et al 2012)

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call