Abstract
Rice (Oryza sativa) is one of the most important crops for humans. The homologs of ent-kaurene synthase (KS) in rice, which are responsible for the biosynthesis of gibberellins and various phytoalexins, are identified by their distinct biochemical functions. However, the KS-Like (KSL) family's potential functions related to hormone and abiotic stress in rice remain uncertain. Here, we identified the KSL family of 19 species by domain analysis and grouped 97 KSL family proteins into three categories. Collinearity analysis of KSLs among Poaceae indicated that the KSL gene may independently evolve and OsKSL1 and OsKSL4 likely play a significant role in the evolutionary process. Tissue expression analysis showed that two-thirds of OsKSLs were expressed in various tissues, whereas OsKSL3 and OsKSL5 were specifically expressed in the root and OsKSL4 in the leaf. Based on the fact that OsKSL2 participates in the biosynthesis of gibberellins and promoter analysis, we detected the gene expression profiles of OsKSLs under hormone treatments (GA, PAC, and ABA) and abiotic stresses (darkness and submergence). The qRT-PCR results demonstrated that OsKSL1, OsKSL3, and OsKSL4 responded to all of the treatments, meaning that these three genes can be candidate genes for abiotic stress. Our results provide new insights into the function of the KSL family in rice growth and resistance to abiotic stress.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.