Abstract

Calcineurin B-like protein-interacting protein kinase (CIPK) plays a key regulatory role in the growth, development, and stress resistance of plants by combining with phosphatase B subunit-like protein. In the present study, CIPK genes were identified in the whole genomes of diploid cottons and their sequences were subjected to bioinformatic analyses. The results demonstrated that the CIPK gene family was unevenly distributed in two diploid cotton genomes. Forty-one CIPKs were identified in the D genome, mainly located on chromosomes 9 and 10, whereas thirty-nine CIPKs were identified in the A genome, mainly located on chromosomes 8 and 11. Based on the gene structures, CIPKs in cotton could be classified into two types: one that is intron-rich and the other that has few introns. Phylogenetic analysis revealed that the CIPK gene family members in cotton had close evolutionary relationships with those of the dicotyledonous plants, such as Arabidopsis thaliana and poplar. The analysis of transcriptome sequence data demonstrated that there were differences in gene expression in different tissues, indicating that the expression of the CIPKs in cotton had spatio-temporal specificity. The expression analysis of CIPKs under abiotic stresses (drought, salt, and low temperature) in different tissues at trefoil stage demonstrated that these stresses induced the expression of CIPKs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call