Abstract

BackgroundEnhancement of crop productivity under various abiotic stresses is a major objective of agronomic research. Wheat (Triticum aestivum L.) as one of the world’s staple crops is highly sensitive to heat stress, which can adversely affect both yield and quality. Plant heat shock factors (Hsfs) play a crucial role in abiotic and biotic stress response and conferring stress tolerance. Thus, multifunctional Hsfs may be potentially targets in generating novel strains that have the ability to survive environments that feature a combination of stresses.ResultIn this study, using the released genome sequence of wheat and the novel Hsf protein HMM (Hidden Markov Model) model constructed with the Hsf protein sequence of model monocot (Oryza sativa) and dicot (Arabidopsis thaliana) plants, genome-wide TaHsfs identification was performed. Eighty-two non-redundant and full-length TaHsfs were randomly located on 21 chromosomes. The structural characteristics and phylogenetic analysis with Arabidopsis thaliana, Oryza sativa and Zea mays were used to classify these genes into three major classes and further into 13 subclasses. A novel subclass, TaHsfC3 was found which had not been documented in wheat or other plants, and did not show any orthologous genes in A. thaliana, O. sativa, or Z. mays Hsf families. The observation of a high proportion of homeologous TaHsf gene groups suggests that the allopolyploid process, which occurred after the fusion of genomes, contributed to the expansion of the TaHsf family. Furthermore, TaHsfs expression profiling by RNA-seq revealed that the TaHsfs could be responsive not only to abiotic stresses but also to phytohormones. Additionally, the TaHsf family genes exhibited class-, subclass- and organ-specific expression patterns in response to various treatments.ConclusionsA comprehensive analysis of Hsf genes was performed in wheat, which is useful for better understanding one of the most complex Hsf gene families. Variations in the expression patterns under different abiotic stress and phytohormone treatments provide clues for further analysis of the TaHsfs functions and corresponding signal transduction pathways in wheat.

Highlights

  • Enhancement of crop productivity under various abiotic stresses is a major objective of agronomic research

  • Identification of Heat shock factor (Hsf) genes in T. aestivum The constructed Hidden Markov Model (HMM) for Hsf was based on the protein sequence of A. thaliana and Oryza sativa, which was queried in BLASTP searches for possible homologous TaHsfs in the T. aestivum proteome

  • Based on the number of amino acid residues inserted into the Heptad Repeats (HR)-A/B domain, 82 TaHsfs were classified into three major classes; class A contained the highest number of TaHsf members (40), classes B and C consisted of 16 and 26 TaHsf members, respectively (Fig. 1B)

Read more

Summary

Introduction

Enhancement of crop productivity under various abiotic stresses is a major objective of agronomic research. Wheat (Triticum aestivum L.) as one of the world’s staple crops is highly sensitive to heat stress, which can adversely affect both yield and quality. Plant heat shock factors (Hsfs) play a crucial role in abiotic and biotic stress response and conferring stress tolerance. Wheat (Triticum aestivum L.) is a temperate cereal crop that often encounters heat stress during the reproductive stage in warm-climate wheat production regions Heat stress has a substantial adverse impact on carbon assimilation and starch synthesis, resulting in the reduction of grain yield and quality. Many genes which exert a crucial part in this complex stress regulation and response network or confer stress tolerance are mainly regulated by transcription factors [7]. Transcription factors are considered as potent candidates for developing the next-generation transgenic crops with strong stress tolerance

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call