Abstract

A heterocyst is a terminally differentiated cell of cyanobacteria which is specialized in dinitrogen fixation. Heterocyst differentiation in Anabaena sp. strain PCC 7120 is triggered by deprivation of combined nitrogen in the medium. Although various genes that are upregulated during heterocyst differentiation have been reported, most studies to date were limited to individual or a small number of genes. We prepared microarrays in collaboration with other members of the Anabaena Genome Project. Here we report on the genome-wide expression analysis of the responses to nitrogen deprivation in Anabaena. Many unidentified genes, as well as previously known genes, were found to be upregulated by nitrogen deprivation at various time points. Three main profiles of gene expression were found: genes expressed transiently at an early stage (1-3 hr) of nitrogen deprivation, genes expressed transiently at a later stage (8 hr), and genes expressed when heterocysts are formed (24 hr). We also noted that many of the upregulated genes were physically clustered to form 'expressed islands' on the chromosome. Namely, large, continuous genomic regions containing many genes were upregulated in a coordinated manner. This suggests a mechanism of global regulation of gene expression that involves chromosomal structure, which is reminiscent of eukaryotic chromatin remodelling. The possible implications of this global regulation are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call