Abstract

ABSTRACTMycobacterium abscessus is an emerging opportunistic human pathogen that naturally resists most major classes of antibiotics, making infections difficult to treat. Thus far, little is known about M. abscessus physiology, pathogenesis, and drug resistance. Genome-wide analyses have comprehensively catalogued genes with essential functions in Mycobacterium tuberculosis and Mycobacterium avium subsp. hominissuis (here, M. avium) but not in M. abscessus. By optimizing transduction conditions, we achieved full saturation of TA insertion sites with Himar1 transposon mutagenesis in the M. abscessus ATCC 19977T genome, as confirmed by deep sequencing prior to essentiality analyses of annotated genes and other genomic features. The overall densities of inserted TA sites (85.7%), unoccupied TA sites (14.3%), and nonpermissive TA sites (8.1%) were similar to results in M. tuberculosis and M. avium. Of the 4,920 annotated genes, 326 were identified as essential, 269 (83%) of which have mutual homology with essential M. tuberculosis genes, while 39 (12%) are homologous to genes that are not essential in M. tuberculosis and M. avium, and 11 (3.4%) only have homologs in M. avium. Interestingly, 7 (2.1%) essential M. abscessus genes have no homologs in either M. tuberculosis or M. avium, two of which were found in phage-like elements. Most essential genes are involved in DNA replication, RNA transcription and translation, and posttranslational events to synthesize important macromolecules. Some essential genes may be involved in M. abscessus pathogenesis and antibiotics response, including certain essential tRNAs and new short open reading frames. Our findings will help to pave the way for better understanding of M. abscessus and benefit development of novel bactericidal drugs against M. abscessus.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.