Abstract

Background:Maternal depressive symptoms are a common phenomenon during pregnancy and are related to negative outcomes for child development and health. Modifications in child DNA methylation are discussed as an underlying mechanism for the association between prenatal depressive symptoms and alterations in child outcomes. However, formerly reported genome-wide associations have yet to be replicated.Methods:In an epigenome-wide association study (EWAS), alterations of DNA methylation related to maternal prenatal depressive symptoms were investigated in buccal cell samples from 174 children (n = 52 exposed to prenatal depressive symptoms; 6-9 years old) of the German longitudinal study FRAMES-FRANCES. Whole blood samples from the independent, age-comparable ARIES subsample of the ARIES/ALSPAC study (n = 641; n = 159 exposed to prenatal depressive symptoms; 7-8 years old) were examined as a confirmation sample. Depressive symptoms were assessed with the Edinburgh Postnatal Depression Scale. DNA methylation was analyzed with the Infinium Human Methylation 450k BeadChip. Modifications in single CpGs, regions, and biological pathways were investigated. Results were adjusted for age and birth outcomes as well as postnatal and current maternal depressive symptoms. Analyses were performed for the whole sample as well as separated for sex.Results:The EWAS yielded no differentially methylated CpG or region as well as no accordance between samples withstanding correction for multiple testing. In pathway analyses, no overlapping functional domain was found to be enriched for either sample. A comparison of current and former findings suggests some overlapping methylation modifications from infancy to childhood. Results suggest that there might be sex-specific differential methylation, which should be further investigated in additional studies.Conclusions:The current, mainly nonsignificant, results challenge the assumption of consistent modifications of DNA methylation in children exposed to prenatal depressive symptoms. Despite the relatively small sample size used in this study, this lack of significant results may reflect diverse issues of environmental epigenetic studies, which need to be addressed in future research.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call