Abstract

MYB family genes are widely distributed in plants and comprise one of the largest transcription factors involved in various developmental processes and defense responses of plants. To date, few MYB genes and little expression profiling have been reported for citrus. Here, we describe and classify 177 members of the sweet orange MYB gene (CsMYB) family in terms of their genomic gene structures and similarity to their putative Arabidopsis orthologs. According to these analyses, these CsMYBs were categorized into four groups (4R-MYB, 3R-MYB, 2R-MYB and 1R-MYB). Gene structure analysis revealed that 1R-MYB genes possess relatively more introns as compared with 2R-MYB genes. Investigation of their chromosomal localizations revealed that these CsMYBs are distributed across nine chromosomes. Sweet orange includes a relatively small number of MYB genes compared with the 198 members in Arabidopsis, presumably due to a paralog reduction related to repetitive sequence insertion into promoter and non-coding transcribed region of the genes. Comparative studies of CsMYBs and Arabidopsis showed that CsMYBs had fewer gene duplication events. Expression analysis revealed that the MYB gene family has a wide expression profile in sweet orange development and plays important roles in development and stress responses. In addition, 337 new putative microsatellites with flanking sequences sufficient for primer design were also identified from the 177 CsMYBs. These results provide a useful reference for the selection of candidate MYB genes for cloning and further functional analysis forcitrus.

Highlights

  • MYB proteins constitute one of the largest families of plantspecific transcription factors, and the family is present in a wide range of land plants

  • The redundant sequences of candidate sweet orange MYB genes (CsMYBs) were discarded from our data set according to their chromosome locations

  • We classified CsMYBs in four distinct groups 1R-MYB, 2R-MYB, 3R-MYB, and 4R-MYB based on the presence of one, two, three and four MYB repeats, respectively (Table S1)

Read more

Summary

Introduction

MYB proteins constitute one of the largest families of plantspecific transcription factors, and the family is present in a wide range of land plants. They are characterized by a structurally conserved DNA-binding domain consisting of single or multiple imperfect repeats located near the N-terminus, which can function synergistically or individually in DNA binding and protein–protein interactions, respectively [1]. The plant-type 2RMYB genes probably evolved from the 3R-MYB genes progenitor through loss of R1 repeat or from an MYB-related gene through duplication of R1 repeat [6,7]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.