Abstract
BackgroundMarek’s disease (MD) is a highly neoplastic disease primarily affecting chickens, and remains as a chronic infectious disease that threatens the poultry industry. Copy number variation (CNV) has been examined in many species and is recognized as a major source of genetic variation that directly contributes to phenotypic variation such as resistance to infectious diseases. Two highly inbred chicken lines, 63 (MD-resistant) and 72 (MD-susceptible), as well as their F1 generation and six recombinant congenic strains (RCSs) with varied susceptibility to MD, are considered as ideal models to identify the complex mechanisms of genetic and molecular resistance to MD.ResultsIn the present study, to unravel the potential genetic mechanisms underlying resistance to MD, we performed a genome-wide CNV detection using next generation sequencing on the inbred chicken lines with the assistance of CNVnator. As a result, a total of 1649 CNV regions (CNVRs) were successfully identified after merging all the nine datasets, of which 90 CNVRs were overlapped across all the chicken lines. Within these shared regions, 1360 harbored genes were identified. In addition, 55 and 44 CNVRs with 62 and 57 harbored genes were specifically identified in line 63 and 72, respectively. Bioinformatics analysis showed that the nearby genes were significantly enriched in 36 GO terms and 6 KEGG pathways including JAK/STAT signaling pathway. Ten CNVRs (nine deletions and one duplication) involved in 10 disease-related genes were selected for validation by using quantitative real-time PCR (qPCR), all of which were successfully confirmed. Finally, qPCR was also used to validate two deletion events in line 72 that were definitely normal in line 63. One high-confidence gene, IRF2 was identified as the most promising candidate gene underlying resistance and susceptibility to MD in view of its function and overlaps with data from previous study.ConclusionsOur findings provide valuable insights for understanding the genetic mechanism of resistance to MD and the identified gene and pathway could be considered as the subject of further functional characterization.
Highlights
Marek’s disease (MD) is a highly neoplastic disease primarily affecting chickens, and remains as a chronic infectious disease that threatens the poultry industry
An average of 30.42 to 226.30 million reads of each chicken line were successfully aligned to the reference genome with the mapping levels ranging from 90.04 to 98.10% for all the individuals
We found 247 Copy number variation region (CNVR) covering 93.9 Mb in length that overlapped with these three MD studies
Summary
Marek’s disease (MD) is a highly neoplastic disease primarily affecting chickens, and remains as a chronic infectious disease that threatens the poultry industry. Two highly inbred chicken lines, 63 (MD-resistant) and 72 (MD-susceptible), as well as their F1 generation and six recombinant congenic strains (RCSs) with varied susceptibility to MD, are considered as ideal models to identify the complex mechanisms of genetic and molecular resistance to MD. MD currently remains a neoplastic disease of chickens of serious concerns to the global poultry industry. Understanding of genetic basis of resistance to MD and improving MD resistance in chickens are of great interest for the poultry industry and animal welfare. In order to optimally implement this control strategy through marker assisted selection (MAS) and to understand the etiology and mechanisms of MD, it is necessary to identify more specific genes and variants with respect to MD resistance
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.