Abstract

Reduced fertility is one of the main causes of economic losses on dairy farms, resulting in economic losses estimated at $938 per stillbirth case in Holstein herds. The identification of genomic regions associated with stillbirth could help to develop better management and breeding strategies aimed to reduce the frequency of undesirable gestation outcomes. Here, 10,570 cows and 50,541 birth records were used to perform a haplotype-based GWAS. A total of 41 significantly associated pseudo-SNPs (haplotypes within haplotype blocks converted to a binary classification) were identified after Bonferroni adjustment for multiple tests. A total of 117 positional candidate genes were annotated within or close (in a 200-kb interval) to significant pseudo-SNPs (haplotype blocks). The guilt-by-association functional prioritization identified 31 potential functional candidate genes for reproductive performance out of the 117 positional candidate genes annotated. These genes play crucial roles in biological processes associated with pregnancy persistence, fetus development, immune response, among others. These results helped us to better understand the genetic basis of stillbirth in dairy cattle and may be useful for the prediction of stillbirth in Holstein cattle, helping to reduce the related economic losses caused by this phenotype.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.