Abstract
We identified genomic regions associated with six quality-related traits in wheat under two sowing conditions and analyzed the effects of multienvironment-significant SNPs on the stability of these traits. Grain quality affects the nutritional and commercial value of wheat (Triticum aestivum L.) and is a critical factor influencing consumer preferences for specific wheat varieties. Climate change is predicted to increase environmental stress and thereby reduce wheat quality. Here, we performed a genotyping assay involving the use of the wheat 90K array in a genome-wide association study of six quality-related traits in 486 wheat accessions under two sowing conditions (normal and late sowing) over 4years. We identified 64 stable quantitativetrait loci (QTL), including 10 for grain protein content, 9 for wet gluten content, 4 for grain starch content, 14 for water absorption, 15 for dough stability time and 12 for grain hardness in wheat under two sowing conditions. These QTL harbored 175 single nucleotide polymorphisms (SNPs), explaining approximately 3-13% of the phenotypic variation in multiple environments. Some QTL on chromosomes 6A and 5D were associated with multiple traits simultaneously, and two (QNGPC.cau-6A, QNGH.cau-5D) harbored known genes, such as NAM-A1 for grain protein content and Pinb for grain hardness, whereas other QTL could facilitate gene discovery. Forty-three SNPs that were detected under late or both normal and late sowing conditions appear to be related to phenotypic stability. The effects of these SNP alleles were confirmed in the association population. The results of this study will be useful for further dissecting the genetic basis of quality-related traits in wheat and developing new wheat cultivars with desirable alleles to improve the stability of grain quality.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.