Abstract

Barley is primarily grown for feed and malt, but in some regions of the world it is also considered to be a staple food. Some barley types such as high-amylose barley have also gained importance as health-promoting foods. Starch that is not readily digested in the upper mammalian gastrointestinal system, or resistant starch (RS), is considered to be valuable because it prevents some diet-related diseases such as colon cancer. RS was quantified in a diverse collection of 209 spring barley varieties released in Europe during the past 100 years. The RS content varied from <1% to >15% in the collection, with 13 varieties having high RS content (>11%) and 15 varieties below 1%. Combined with genome-wide association scanning (GWAS), SNP markers and candidate genes controlling the RS content in grains were identified. This identified 40 SNP markers with a LOD score above 2, located on chromosomes 2H, 3H, 5H, and 6H, respectively. Among these SNPs, 10 genes with a known role in starch biosynthesis were associated on the basis of synteny conservation to the rice genome. The β-glucan content was quantified in 61 varieties selected to represent extreme as well as medium RS values. The β-glucan amount in the 15 varieties with RS <1% ranged from 1.7 to 3.2%, ranged from 1.76 to 2.54% in the 13 varieties with RS >11%, and ranged from 1.95 to 2.82% for those with 1%< RS < 11%. No statistically significant correlation between RS content and β-glucan content was found. This association analysis of commercial varieties revealed a large variation in RS content and identified a number of SNP markers that can be explored for selection and further dissection of the pathway and control of RS phenotype.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call