Abstract

The phenolic compounds in eggplant offer potential natural antioxidants for improved health. A large number of samples were examined in order to find eggplant germplasm with a high potential for health promotion. A genome-wide association study (GWAS) was conducted to identify single nucleotide polymorphisms (SNPs) associated with variations in total phenolic content (TPC) and antioxidant activity in eggplants, including ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)) scavenging activity and ferric reducing antioxidant power (FRAP). TPC values varied from 14.19 to 842.90 mg gallic acid equivalent (GAE)/100 g of dry weight of eggplant fruit powder. TPC showed a strong positive correlation with both FRAP and ABTS (r = 0.89 *** and 0.77 ***, respectively). The GWAS identified 20 SNPs that were significantly associated out of 29,183 SNPs. Out of the 20 significant SNPs, 11 showed associations with TPC, 4 with ABTS activity, and 5 with FRAP. Among the SNPs associated with TPC, one SNP was found on each of Chromosomes 3, 4, 7, and 12. In contrast, Chromosome 5 comprised two SNPs associated to TPC. Furthermore, the gene encoding IRX12 laccase-4 on Chromosome 10 was found to contain five SNPs associated with TPC. Four significantly linked SNPs on Chromosomes 1 (1 SNP), 4 (2 SNPs), and 10 (1 SNP) were found to be related to ABTS activity. The identified SNPs will be further examined as markers for selecting desirable eggplant varieties and exploring the links between candidate genes, phenolic content, and antioxidant activity. The findings of this study could assist in further study and the development of eggplants with improved health advantages through targeted breeding.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call