Abstract

Identification and understanding of the genetic basis of natural variations in plants are essential for comprehending their phenotypic adaptation. Here, we report a genome-wide association study (GWAS) of FLOWERING LOCUS C (FLC) expression in 727 Arabidopsis accessions. We identified B LYMPHOMA MOLONEY MURINE LEUKEMIA VIRUS INSERTION REGION 1 HOMOLOG 1A (BMI1A) as a causal gene for one of the FLC expression quantitative trait loci (QTLs). Loss of function in BMI1A increases FLC expression and delays flowering time at 16 °C significantly compared with the wild type (Col-0). BMI1A activity is required for histone H3 lysine 27 trimethylation (H3K27me3) accumulation at the FLC, MADS AFFECTING FLOWERING 4 (MAF4), and MAF5 loci at low ambient temperature. We further uncovered two BMI1A haplotypes associated with the natural variation in FLC expression and flowering time at 16 °C, and demonstrated that polymorphisms in the BMI1A promoter region are the main contributor. Different BMI1A haplotypes are strongly associated with geographical distribution, and the low ambient temperature-sensitive BMI1A variants are associated with a lower mean temperature of the driest quarter of their collection sites compared with the temperature-non-responsive variants, indicating that the natural variations in BMI1A have adaptive functions in FLC expression and flowering time regulation. Therefore, our results provide new insights into the natural variations in FLC expression and flowering time diversity in plants.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.