Abstract

This study aimed to estimate genetic parameters and identify genomic region(s) associated with selected cheese-making properties (CMP) in Dual-Purpose Belgian Blue (DPBB) cows. Edited data were 46,301 test-day records of milk yield, fat percentage, protein percentage, casein percentage, milk calcium content (CC), coagulation time (CT), curd firmness after 30 min from rennet addition (a30), and milk titratable acidity (MTA) collected from 2014 to 2020 on 4,077 first-parity (26,027 test-day records), and 3,258 second-parity DPBB cows (20,274 test-day records) distributed in 124 herds in the Walloon Region of Belgium. Data of 28,266 SNP, located on 29 Bos taurus autosomes (BTA) of 1,699 animals were used. Random regression test-day models were used to estimate genetic parameters through the Bayesian Gibbs sampling method. The SNP solutions were estimated using a single-step genomic BLUP approach. The proportion of the total additive genetic variance explained by windows of 25 consecutive SNPs (with an average size of ∼2 Mb) was calculated, and regions accounting for at least 1.0% of the total additive genetic variance were used to search for candidate genes. Heritability estimates for the included CMP ranged from 0.19 (CC) to 0.50 (MTA), and 0.24 (CC) to 0.41 (MTA) in the first and second parity, respectively. The genetic correlation estimated between CT and a30 varied from -0.61 to -0.41 and from -0.55 to -0.38 in the first and second lactations, respectively. Negative genetic correlations were found between CT and milk yield and composition, while those estimated between curd firmness and milk composition were positive. Genome-wide association analyses results identified 4 genomic regions (BTA1, BTA3, BTA7, and BTA11) associated with the considered CMP. The identified genomic regions showed contrasting results between parities and among the different stages of each parity. It suggests that different sets of candidate genes underlie the phenotypic expression of the considered CMP between parities and lactation stages of each parity. The findings of this study can be used for future implementation and use of genomic evaluation to improve the cheese-making traits in DPBB cows.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call