Abstract

BackgroundEmerging studies demonstrate that single nucleotide polymorphisms (SNPs) resided in the microRNA recognition element seed sites (MRESSs) in 3′UTR of mRNAs are putative biomarkers for human diseases and cancers. However, exhaustively experimental validation for the causality of MRESS SNPs is impractical. Therefore bioinformatics have been introduced to predict causal MRESS SNPs. Genome-wide association study (GWAS) provides a way to detect susceptibility of millions of SNPs simultaneously by taking linkage disequilibrium (LD) into account, but the multiple-testing corrections implemented to suppress false positive rate always sacrificed the sensitivity. In our study, we proposed a method to identify candidate causal MRESS SNPs from 12 GWAS datasets without performing multiple-testing corrections. Alternatively, we used biological context to ensure credibility of the selected SNPs.ResultsIn 11 out of the 12 GWAS datasets, MRESS SNPs were over-represented in SNPs with p-value ≤ 0.05 (odds ratio (OR) ranged from 1.1 to 2.4). Moreover, host genes of susceptible MRESS SNPs in each of the 11 GWAS dataset shared biological context with reported causal genes. There were 286 MRESS SNPs identified by our method, while only 13 SNPs were identified by multiple-testing corrections with a given threshold of 1 × 10−5, which is a common cutoff used in GWAS. 27 out of the 286 candidate SNPs have been reported to be deleterious while only 2 out of 13 multiple-testing corrected SNPs were documented in PubMed. MicroRNA-mRNA interactions affected by the 286 candidate SNPs were likely to present negatively correlated expression. These SNPs introduced greater alternation of binding free energy than other MRESS SNPs, especially when grouping by haplotypes (4210 vs. 4105 cal/mol by mean, 9781 vs. 8521 cal/mol by mean, respectively).ConclusionsMRESS SNPs are promising disease biomarkers in multiple GWAS datasets. The method of integrating GWAS p-value and biological context is stable and effective for selecting candidate causal MRESS SNPs, it reduces the loss of sensitivity compared to multiple-testing corrections. The 286 candidate causal MRESS SNPs provide researchers a credible source to initialize their design of experimental validations in the future.Electronic supplementary materialThe online version of this article (doi:10.1186/1471-2164-15-669) contains supplementary material, which is available to authorized users.

Highlights

  • Emerging studies demonstrate that single nucleotide polymorphisms (SNPs) resided in the microRNA recognition element seed sites (MRESSs) in 3′UTR of mRNAs are putative biomarkers for human diseases and cancers

  • In view of the observations that one microRNA can regulate hundreds of mRNAs and one mRNA may have multiple microRNA target sites in its 3′ UTR [5,6,7], SNPs residing in the 3′UTR MRESSs should be the more common genetic factor affecting the binding between microRNAs and mRNAs

  • Allele-specific mRNA expression induced by MRESS SNPs is proved to be associated with several diseases and cancers: Nicoloso et al [8] observed genotype AG carriers of rs334348 G > A suffered higher risk of breast cancer (AG vs. AA, Odds ratio (OR) = 1.69, p = 0.048), whereas rs334348 located in a MRESS of miR-628-5p in 3′UTR of the TGFBR1 gene and G-allele consolidates target-binding

Read more

Summary

Introduction

Emerging studies demonstrate that single nucleotide polymorphisms (SNPs) resided in the microRNA recognition element seed sites (MRESSs) in 3′UTR of mRNAs are putative biomarkers for human diseases and cancers. In view of the observations that one microRNA can regulate hundreds of mRNAs and one mRNA may have multiple microRNA target sites in its 3′ UTR [5,6,7], SNPs residing in the 3′UTR MRESSs should be the more common genetic factor affecting the binding between microRNAs and mRNAs. Allele-specific mRNA expression induced by MRESS SNPs is proved to be associated with several diseases and cancers: Nicoloso et al [8] observed genotype AG carriers of rs334348 G > A suffered higher risk of breast cancer (AG vs AA, OR = 1.69, p = 0.048), whereas rs334348 located in a MRESS of miR-628-5p in 3′UTR of the TGFBR1 gene and G-allele consolidates target-binding. Pathological analysis reveals positive correlation between expression level of FGF20 and α-Synuclein, whereas overexpression of α-Synuclein is previously reported to cause PD, which implies pathogenesis of the T-allele is to abolish the interaction between FGF20 gene and miR-433 lead to up-regulation of α-Synuclein

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.