Abstract

Simple SummaryMastitis causes economic loss due to discarded milk and reduced milk production and quality, increased medical care costs and somatic cell count (SCC) penalties. The use of genetic markers associated with the variability of this trait through marker-assisted selection (MAS) could help traditional methods. Our objectives were to identify new single nucleotide polymorphisms (SNPs) and genes associated with mastitis resistance in Assaf sheep by using the Illumina Ovine Infinium® HD SNP BeadChip (680K). Firstly, corrected phenotype estimates for somatic cell score (SCS) were calculated using 6173 records from 1894 multiparous Assaf ewes, and were used to select 192 extreme animals (low SCS group: n = 96; and high SCS group: n = 96) for the genome-wide association study (GWAS). Four SNPs (rs419096188, rs415580501, rs410336647, and rs424642424), three of them totally linked, were found to be significant at the chromosome level (FDR 10%) in two different regions of OAR19 close to genes related to the immune system response. Validation studies of two SNPs (rs419096188 and rs424642424) by Kompetitive Allele-Specific PCR (KASP) genotyping in the total population (n = 1894) confirmed previous GWAS association results for the SCS trait. Finally, the SNP rs419096188 was also associated with lactose content trait.A genome-wide association study (GWAS) was performed to identify new single nucleotide polymorphisms (SNPs) and genes associated with mastitis resistance in Assaf sheep by using the Illumina Ovine Infinium® HD SNP BeadChip (680K). In total, 6173 records from 1894 multiparous Assaf ewes with at least three test day records and aged between 2 and 7 years old were used to estimate a corrected phenotype for somatic cell score (SCS). Then, 192 ewes were selected from the top (n = 96) and bottom (n = 96) tails of the corrected SCS phenotype distribution to be used in a GWAS. Although no significant SNPs were found at the genome level, four SNPs (rs419096188, rs415580501, rs410336647, and rs424642424) were significant at the chromosome level (FDR 10%) in two different regions of OAR19. The SNP rs419096188 was located in intron 1 of the NUP210 and close to the HDAC11 genes (61 kb apart), while the other three SNPs were totally linked and located 171 kb apart from the ARPP21 gene. These three genes were related to the immune system response. These results were validated in two SNPs (rs419096188 and rs424642424) in the total population (n = 1894) by Kompetitive Allele-Specific PCR (KASP) genotyping. Furthermore, rs419096188 was also associated with lactose content.

Highlights

  • Mastitis is the most frequent inflammation-driven disease that occurs in response to infection with pathogenic microorganisms such as Escherichia coli, Streptococcus uberis, and Staphylococcus aureus [1] or physical damage

  • The corrected phenotype obtained was the permanent effect of each ewe, which is a new phenotype without the known effects

  • The genome-wide association study (GWAS) was performed after the Quality Control (QC) of the raw genotypes

Read more

Summary

Introduction

Mastitis is the most frequent inflammation-driven disease that occurs in response to infection with pathogenic microorganisms such as Escherichia coli, Streptococcus uberis, and Staphylococcus aureus [1] or physical damage. This disease is associated with substantial economic losses for the sheep dairy sector due to the cost of discarded milk, reduced milk production and quality, and increased medical care costs. Spanish Assaf, currently the most important dairy sheep breed in Spain, is a synthetic crossbreed (Awassi × east Friesian) originating in Israel; there are currently 145,000 Assaf ewes in Spain. Traits related to milk health based on the somatic cell count (SCC) as an indicator trait for mastitis resistance and udder morphology have been included since 2017

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call