Abstract

BackgroundNitrogen fertilization is known to increase disease susceptibility, a phenomenon called Nitrogen-Induced Susceptibility (NIS). In rice, this phenomenon has been observed in infections with the blast fungus Magnaporthe oryzae. A previous classical genetic study revealed a locus (NIS1) that enhances susceptibility to rice blast under high nitrogen fertilization. In order to further address the underlying genetics of plasticity in susceptibility to rice blast after fertilization, we analyzed NIS under greenhouse-controlled conditions in a panel of 139 temperate japonica rice strains. A genome-wide association analysis was conducted to identify loci potentially involved in NIS by comparing susceptibility loci identified under high and low nitrogen conditions, an approach allowing for the identification of loci validated across different nitrogen environments. We also used a novel NIS Index to identify loci potentially contributing to plasticity in susceptibility under different nitrogen fertilization regimes.ResultsA global NIS effect was observed in the population, with the density of lesions increasing by 8%, on average, under high nitrogen fertilization. Three new QTL, other than NIS1, were identified. A rare allele of the RRobN1 locus on chromosome 6 provides robust resistance in high and low nitrogen environments. A frequent allele of the NIS2 locus, on chromosome 5, exacerbates blast susceptibility under the high nitrogen condition. Finally, an allele of NIS3, on chromosome 10, buffers the increase of susceptibility arising from nitrogen fertilization but increases global levels of susceptibility. This allele is almost fixed in temperate japonicas, as a probable consequence of genetic hitchhiking with a locus involved in cold stress adaptation.ConclusionsOur results extend to an entire rice subspecies the initial finding that nitrogen increases rice blast susceptibility. We demonstrate the usefulness of estimating plasticity for the identification of novel loci involved in the response of rice to the blast fungus under different nitrogen regimes.

Highlights

  • Nitrogen fertilization is known to increase disease susceptibility, a phenomenon called Nitrogen-Induced Susceptibility (NIS)

  • We have previously identified an allele from the Aus Kasalath variety at the NIS1 locus on chromosome 1 that dominantly confers enhanced susceptibility to rice blast under high nitrogen fertilization, when introgressed into the temperate japonica Nipponbare variety [24]

  • NIS is rare, weak, and isolate-dependent in temperate japonica rice genotypes Partial resistance/susceptibility to rice blast was estimated under two nitrogen fertilization condition levels from a least-square means (Lsmeans) analysis of the density of blast lesions

Read more

Summary

Introduction

Nitrogen fertilization is known to increase disease susceptibility, a phenomenon called Nitrogen-Induced Susceptibility (NIS) In rice, this phenomenon has been observed in infections with the blast fungus Magnaporthe oryzae. A previous classical genetic study revealed a locus (NIS1) that enhances susceptibility to rice blast under high nitrogen fertilization. Virulent fungal strains regularly appear two to six years after adopting resistant varieties, and complete resistance is often not durable [20, 21] For these reasons, partial (quantitative) resistance, which reduces susceptibility levels, appears to be a complementary option [20]. We have previously identified an allele from the Aus Kasalath variety at the NIS1 locus on chromosome 1 that dominantly confers enhanced susceptibility to rice blast under high nitrogen fertilization, when introgressed into the temperate japonica Nipponbare variety [24]. Despite the identification of NIS1, the genetics of NIS remains poorly understood in rice and other plants

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.