Abstract

Haplotype-based breeding involving multi-marker association analysis is a promising approach to developing custom-designed, high-yielding crop varieties. Here, we reported multi-marker association analysis for the number of pods per plant (PNP), the number of seeds per plant (SNP), 100-seed weight (HSW), and seed yield per plant (SYP) using 211 cultivated soybean accessions. The field experiment was conducted across six environments following a randomized complete block design with three replications. A genome-wide association study (GWAS) explored 12,617 single-nucleotide polymorphism (SNP) markers from NJAU 355K SoySNP array to identify significant marker associations for the studied traits across the six environments. Six markers that were consistently associated with the yield traits in two or more environments were considered stable and selected as the reference markers for building haplotype block/loci. The multi-marker association analysis within the haplotype-based framework revealed various allelic combinations regulating the phenotypic variations for the studied yield-related traits in soybean. These haplotype alleles may serve as genomic resources in breeding programs aimed at improving the yield potential of soybean.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.