Abstract

Shoot apical and lateral meristems play essential roles in the formation and development of primary and secondary growth in plants. A delicate regulatory mechanism is needed to maintain homeostatic balance between the primary and secondary growth, as well as the self-renewal of meristems with the rate of cell division and differentiation of new meristems. However, little is known about the roles of long non-coding RNAs (lncRNAs) in the regulation of maintenance and differentiation of primary and secondary growth in Populus, especially in the cambium division and differentiation into secondary xylem. Here, 1298 lncRNAs were identified both in the apical meristem and vascular cambium, with 80 lncRNAs being expressed only in shoot apical meristem and 45 only in vascular cambium. There are 410 differentially expressed lncRNAs in shoot apical meristem and vascular cambium, among which 271 lncRNAs were up-regulated and 139 were down-regulated in cambium. The GO enrichment analysis revealed that differentially expressed lncRNAs mainly influenced the expression of lncRNAs related to the ribosome pathway, plant hormone signal pathway and photosynthesis pathway. The differentially expressed lncRNAs mainly target mRNA through cis-regulation in the vascular cambium. In addition, six key lncRNAs and also their significantly upregulated target genes were identified. Theses target genes are involved in plant secondary metabolites, cellulose and lignin synthesis, hormone and signal transduction. In addition, six key lncRNAs were identified, their significantly upregulated target genes are related to plant secondary metabolites, cellulose and lignin synthesis, hormone and signal transduction. Investigating lncRNA–mRNA interactions, we further found some genes that may be related to the development of vascular cambium, such as domain-containing transcription factors, cellulose synthesis genes, calcium dependent protein kinase 2, cytokinin receptor 1, glycosyl transferase and polyphenol oxidase. Our findings provide new insights into the lncRNA-mRNA networks in the development of vascular cambium of secondary growth in Populus.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.