Abstract

BackgroundLong noncoding RNAs (lncRNAs) have been shown to play important roles in the response of plants to various abiotic stresses, including drought, heat and salt stress. However, the identification and characterization of genome-wide salt-responsive lncRNAs in tobacco (Nicotiana tabacum L.) have been limited. Therefore, this study aimed to identify tobacco lncRNAs in roots and leaves in response to different durations of salt stress treatment.ResultsA total of 5,831 lncRNAs were discovered, with 2,428 classified as differentially expressed lncRNAs (DElncRNAs) in response to salt stress. Among these, only 214 DElncRNAs were shared between the 2,147 DElncRNAs in roots and the 495 DElncRNAs in leaves. KEGG pathway enrichment analysis revealed that these DElncRNAs were primarily associated with pathways involved in starch and sucrose metabolism in roots and cysteine and methionine metabolism pathway in leaves. Furthermore, weighted gene co-expression network analysis (WGCNA) identified 15 co-expression modules, with four modules strongly linked to salt stress across different treatment durations (MEsalmon, MElightgreen, MEgreenyellow and MEdarkred). Additionally, an lncRNA-miRNA-mRNA network was constructed, incorporating several known salt-associated miRNAs such as miR156, miR169 and miR396.ConclusionsThis study enhances our understanding of the role of lncRNAs in the response of tobacco to salt stress. It provides valuable information on co-expression networks of lncRNA and mRNAs, as well as networks of lncRNAs-miRNAs-mRNAs. These findings identify important candidate lncRNAs that warrant further investigation in the study of plant-environment interactions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call