Abstract

ObjectiveBushen Tiansui formula (BSTSF), a traditional Chinese medicine prescription, has been widely used to treat Alzheimer’s disease (AD). However, the mechanisms underlying its effects remain largely unknown. In this study, a rat AD model was used to study the effects of BSTSF on cognitive performance and expression of transfer RNA-derived small RNAs (tsRNAs) in the hippocampus, to determine whether treatment of AD with BSTSF could regulate the expression of tsRNAs, a novel small non-coding RNA. MethodsTo generate a validated AD model, oligomeric amyloid-β1-42 (Aβ1-42) was injected intracerebroventricularly into rats. The Morris water maze (MWM) test was used to evaluate rat cognitive performance, and tsRNA-sequencing was conducted to examine tsRNA expression in the rat hippocampus. Potential targets were validated by quantitative real-time polymerase chain reaction (qRT-PCR). Bioinformatic analyses were conducted to investigate the biological function of candidate tsRNAs. ResultsThe learning and memory deficits of Aβ1–42-induced AD rats, assessed by MWM tests, were clearly ameliorated by BSTSF treatment. A total of 387 tsRNAs were detected in the rat hippocampus. Among them, 13 were significantly dysregulated in AD rats compared with sham control rats, while 57 were markedly altered by BSTSF treatment, relative to untreated AD rats (fold change ≥ 2 and P < 0.05). Moreover, six BSTSF treatment-related tsRNAs were identified and validated by qRT-PCR. Bioinformatic analyses indicated that the six treatment-related tsRNAs had potential therapeutic roles, via multiple signaling pathways and Gene Ontology biological functions, including cyclic adenosine monophosphate and retrograde endocannabinoid signaling. ConclusionThis study identified a previously uncharacterized mechanism underlying the effects of BSTSF in alleviating the learning and memory deficits in Aβ1–42-induced AD rats, demonstrating that tsRNAs are potential therapeutic targets of BSTSF in the treatment of AD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.