Abstract

Low temperature is one of the major environmental stresses that affects plant growth and development, and leads to decrease in crop yield and quality. Thellungiella salsuginea (salt cress) exhibits high tolerance to chilling, is an appropriate model to investigate the molecular mechanisms of cold tolerance. Here, we compared transcription changes in the roots and leaves of T. salsuginea under cold stress using RNA-seq. We identified 2,782 and 1,430 differentially expressed genes (DEGs) in leaves and roots upon cold treatment, respectively. The expression levels of some genes were validated by quantitative real-time-PCR (qRT-PCR). Among these DEGs, 159 (11.1%) genes in roots and 232 (8.3%) genes in leaves were annotated as various types of transcription factors. We found that five aquaporin genes (three TIPs, one PIPs, and one NIPs) responded to cold treatment. In addition, the expression of COR47, ICE1, and CBF1 genes of DREB1/CBF-dependent cold signaling pathway genes altered in response to low temperature. KEGG pathway analysis indicated that these cold regulated genes were enriched in metabolism, photosynthesis, circadian rhythm, and transcriptional regulation. Our findings provided a complete picture of the regulatory network of cold stress response in T. salsuginea. These cold-responsive genes could be targeted for detail functional study and utilization in crop cold tolerance improvement.

Highlights

  • Plants generally are rooted in one place, and have to face drought, salinity, high temperature, cold, and other adverse stresses which may cause significant loss of crop yield (Boyer, 1982; Kawasaki and Bohnert, 2001)

  • 90% reads from leaves and 85% reads from roots were mapped to the Thellungiella reference genome, and about 7% reads from leaves and 3.5% reads from roots were mapped to multiple regions, respectively (Table 1)

  • In our RNA-seq data, nine and three differentially expressed NAC transcription factor genes were identified in leaves and roots, respectively. These results indicated that HSF, WRKY and NAC transcription factors were involved in plant responses to various stresses, and suggested that cold stress might share common molecular mechanism with other abiotic stresses

Read more

Summary

Introduction

Plants generally are rooted in one place, and have to face drought, salinity, high temperature, cold, and other adverse stresses which may cause significant loss of crop yield (Boyer, 1982; Kawasaki and Bohnert, 2001). Low temperature is one of the major environmental stresses that affect plant growth and development, crop yield and quality. The intercellular fluid generally has a higher freezing point than the intracellular fluid. When temperature decreased below freezing point, intercellular spaces of plant tissues form ice prior to intracellular region. The water potential decreases rapidly outside the cells, and causes the movement of water from inside the cell to the intercellular spaces. Cold stress could lead to severe cellular dehydration

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.