Abstract

Programs of gene transcription are controlled by cis-acting DNA elements, including enhancers, silencers, and promoters. Local accessibility of chromatin has proven to be a highly informative structural feature for identifying such regulatory elements, which tend to be relatively open due to their interactions with proteins. Recently, ATAC-seq (assay for transposase-accessible chromatin using sequencing) has emerged as one of the most powerful approaches for genome-wide chromatin accessibility profiling. This method assesses DNA accessibility using hyperactive Tn5 transposase, which simultaneously cuts DNA and inserts sequencing adaptors, preferentially in regions of open chromatin. ATAC-seq is a relatively simple procedure which can be applied to only a few thousand cells. It is well-suited to developing embryos of sea urchins and other echinoderms, which are a prominent experimental model for understanding the genomic control of animal development. In this chapter, we present a protocol for applying ATAC-seq to embryonic cells of sea urchins.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.