Abstract

BackgroundAutophagy is a cellular degradation process that is highly evolutionarily-conserved in yeast, plants, and animals. In plants, autophagy plays important roles in regulating intracellular degradation and recycling of amino acids in response to nutrient starvation, senescence, and other environmental stresses. Foxtail millet (Setaria italica) has strong resistance to stresses and has been proposed as an ideal material for use in the study of the physiological mechanisms of abiotic stress tolerance in plants. Although the genome sequence of foxtail millet (Setaria italica) is available, the characteristics and functions of abiotic stress-related genes remain largely unknown for this species.ResultsA total of 37 putative ATG (autophagy-associated genes) genes in the foxtail millet genome were identified. Gene duplication analysis revealed that both segmental and tandem duplication events have played significant roles in the expansion of the ATG gene family in foxtail millet. Comparative synteny mapping between the genomes of foxtail millet and rice suggested that the ATG genes in both species have common ancestors, as their ATG genes were primarily located in similar syntenic regions. Gene expression analysis revealed the induced expression of 31 SiATG genes by one or more phytohormone treatments, 26 SiATG genes by drought, salt and cold, 24 SiATG genes by darkness and 25 SiATG genes by nitrogen starvation. Results of qRT-PCR showing that among 37 SiATG genes, the expression level of SiATG8a was the highest after nitrogen starvation treatment 24 h, suggesting its potential role in tolerance to nutrient starvation. Moreover, the heterologous expression of SiATG8a in rice improved nitrogen starvation tolerance. Compared to wild type rice, the transgenic rice performed better and had higher aboveground total nitrogen content when the plants were grown under nitrogen starvation conditions.ConclusionsOur results deepen understanding about the characteristics and functions of ATG genes in foxtail millet and also identify promising new genetic resources that should be of use in future efforts to develop varieties of foxtail millet and other crop species that have resistance to nitrogen deficiency stress.Electronic supplementary materialThe online version of this article (doi:10.1186/s12864-016-3113-4) contains supplementary material, which is available to authorized users.

Highlights

  • Autophagy is a cellular degradation process that is highly evolutionarily-conserved in yeast, plants, and animals

  • Bioinformatics analysis of 37 SiATG genes: identification and chromosomal distribution A total of 37 putative associated gene (ATG) genes were identified in foxtail millet via genome-wide analysis (Additional file 1: Table S1)

  • The deduced SiATG protein sequences ranged from 91 amino acids (SiATG12) to 2474 amino acids (SiTOR), and the corresponding molecular weights varied from 10 to 278 kDa

Read more

Summary

Introduction

Autophagy is a cellular degradation process that is highly evolutionarily-conserved in yeast, plants, and animals. Autophagy plays important roles in regulating intracellular degradation and recycling of amino acids in response to nutrient starvation, senescence, and other environmental stresses. Foxtail millet (Setaria italica) has strong resistance to stresses and has been proposed as an ideal material for use in the study of the physiological mechanisms of abiotic stress tolerance in plants. Autophagy is a highly evolutionarily-conserved cellular degradation process that is induced by nutrient starvation and it is essential for recycling of the cellular cytoplasmic contents and the breakdown of damaged proteins [1, 2]. The content of autophagosome ranges from damaged proteins to obsolete organelles This content is delivered into a vacuole (in yeast and plants) or a lysosome (animals) for degradation and nutrient recycling during periods of stress and starvation [1, 2]. The molecular and physiological mechanisms of plant autophagy are attracting more and more research attention

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.