Abstract

BackgroundSpinosad is a macrolide antibiotic produced by Saccharopolyspora spinosa with aerobic fermentation. However, the wild strain has a low productivity. In this article, a computational guided engineering approach was adopted in order to improve the yield of spinosad in S. spinosa.ResultsFirstly, a genome-scale metabolic network reconstruction (GSMR) for S.spinosa based on its genome information, literature data and experimental data was extablished. The model was consists of 1,577 reactions, 1,726 metabolites, and 733 enzymes after manually refined. Then, amino acids supplying experiments were performed in order to test the capabilities of the model, and the results showed a high consistency. Subsequently, transhydrogenase (PntAB, EC 1.6.1.2) was chosen as the potential target for spinosad yield improvement based on the in silico metabolic network models. Furthermore, the target gene was manipulated in the parent strain in order to validate the model predictions. At last, shake flask fermentation was carried out which led to spinosad production of 75.32 mg/L, 86.5% higher than the parent strain (40.39 mg/L).ConclusionsResults confirmed the model had a high potential in engineering S. spinosa for spinosad production. It is the first GSMM for S.spinosa, it has significance for a better understanding of the comprehensive metabolism and guiding strain designing of Saccharopolyspora spinosa in the future.

Highlights

  • Spinosad is a macrolide antibiotic produced by Saccharopolyspora spinosa with aerobic fermentation

  • The GSMM contained 1577 metabolites and 1736 reactions and 733 enzymes (Additional file 1 shows the network in more detail)

  • In this work, the first Genome-scale metabolic network of Saccharopolyspora spinosa was constructed following a systematic workflow. It was validated by amino acids supplementation experiments

Read more

Summary

Introduction

Spinosad is a macrolide antibiotic produced by Saccharopolyspora spinosa with aerobic fermentation. Spinosyns A and D, the two major components in the S. spinosa fermentation,are defined as spinosad [3]. It mainly contains a 21-carbon tetracyclic with two deoxysugars: tri-O-methylated rhamnose and forosamine [4]. Waldron firstly analyzed the proposed spinosyn biosynthetic pathway [5], In recent years, the spinosad biosynthetic pathway has been clarified more accuracy: SpnA, spnB, spnC, spnD, and spnE responsible for type I polyketide synthase; spnF,spnJ, spnL, and spnM for modifying the polyketide synthase product [6]; spnG, spnH, spnI, and spnK for rhamnose attachment and methylation [7]; spnP, spnO, spnN, spnQ, spnR, and spnS for forosamine biosynthesis; gtt, gdh, epi, and kre for rhamnose biosynthesis [8] and beside the spinosad gene cluster four genes ORF-L16, ORF-R1, and ORF-R2, have no effect on spinosad biosynthesis

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call