Abstract

Pb (lead) is one of the most widespread and toxic heavy metal contaminants and imposes potential harm to human health. Pb ions cause cellular damage and induce loss of cell viability. However, mechanisms regulating Pb toxicity remain poorly understood. Through a genome-scale screen, we have identified 30 yeast single-gene deletion mutants that are sensitive to lead ions. These genes are involved in the metabolism, transcription, protein synthesis, cell cycle and DNA processing, protein folding, modification, destination, as well as cellular transport process. Comparative analyses to cadmium-sensitive mutations identified from previous studies indicate that overlapping genes of lead- and cadmium-sensitive mutations are involved in both the metabolism and the cellular transport process. Furthermore, eleven lead-sensitive mutants show elevated levels of lead contents in response to lead stress. Our findings provide a basis to understand molecular mechanisms underlying the detoxification of lead ions by yeast cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call