Abstract

The X and Y sex chromosomes of placental mammals show hallmarks of a tumultuous evolutionary past. The X Chromosome has a rich and conserved gene content, while the Y Chromosome has lost most of its genes. In the Transcaucasian mole vole Ellobius lutescens, the Y Chromosome including Sry has been lost, and both females and males have a 17,X diploid karyotype. Similarly, the closely related Ellobius talpinus, has a 54,XX karyotype in both females and males. Here, we report the sequencing and assembly of the E. lutescens and E. talpinus genomes. The results indicate that the loss of the Y Chromosome in E. lutescens and E. talpinus occurred in two independent events. Four functional homologs of mouse Y-Chromosomal genes were detected in both female and male E. lutescens, of which three were also detected in the E. talpinus genome. One of these is Eif2s3y, known as the only Y-derived gene that is crucial for successful male meiosis. Female and male E. lutescens can carry one and the same X Chromosome with a largely conserved gene content, including all genes known to function in X Chromosome inactivation. The availability of the genomes of these mole vole species provides unique models to study the dynamics of sex chromosome evolution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.