Abstract

Cognitive impairment is prevalent in blood or marrow transplantation (BMT) recipients, albeit with inter-individual variability. We conducted a genome-wide association study of objective cognitive function assessed longitudinally in 239 adult BMT recipients for discovery and replicated in an independent cohort of 540 BMT survivors. Weighted genome-wide polygenic risk scores (PRS) were constructed using linkage disequilibrium pruned significant SNPs. Forty-four genome-wide significant SNPs were identified using additive (n = 3); codominant (n = 20) and genotype models (n = 21). Each additional copy of a risk allele was associated with a 0.28-point (p = 1.07 × 10-8) to a 1.82-point (p = 6.7 × 10-12) increase in a global deficit score. We replicated two SNPs (rs11634183 and rs12486041) with links to neural integrity. Patients in the top PRS quintile were at increased risk of cognitive impairment in discovery (RR = 1.95, 95%CI: 1.28-2.96, p = 0.002) and replication cohorts (OR = 1.84, 95%CI, 1.02-3.32, p = 0.043). Associations were stronger among individuals with lowest clinical risk for cognitive impairment. These findings support potential utility of PRS-based risk classification in the development of targeted interventionsaimed at improving cognitive outcomes in BMT survivors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call