Abstract

Ammonia-oxidizing archaea (AOA) are widespread in nature and are involved in nitrification, an essential process in the global nitrogen cycle. The enzymes for ammonia oxidation and electron transport rely heavily on copper (Cu), which can be limited in nature. In this study the model soil archaeon Nitrososphaera viennensis was investigated via transcriptomic analysis to gain insight regarding possible Cu uptake mechanisms and compensation strategies when Cu becomes limiting. Upon Cu limitation, N. viennensis exhibited impaired nitrite production and thus growth, which was paralleled by downregulation of ammonia oxidation, electron transport, carbon fixation, nucleotide, and lipid biosynthesis pathway genes. Under Cu-limitation, 1547 out of 3180 detected genes were differentially expressed, with 784 genes upregulated and 763 downregulated. The most highly upregulated genes encoded proteins with a possible role in Cu binding and uptake, such as the Cu chelator and transporter CopC/D, disulfide bond oxidoreductase D (dsbD), and multicopper oxidases. While this response differs from the marine strain Nitrosopumilus maritimus, conserved sequence motifs in some of the Cu-responsive genes suggest conserved transcriptional regulation in terrestrial AOA. This study provides possible gene regulation and energy conservation mechanisms linked to Cu bioavailability and presents the first model for Cu uptake by a soil AOA.

Highlights

  • Ammonia-oxidizing archaea (AOA) perform the first and rate-limiting step of nitrification along with ammonia-These authors contributed : Carolina Reyes, Logan H

  • Initial growth tests with N. viennensis were performed in the presence and absence of TETA in order to determine if this Cu chelator affects growth of the organism

  • These results demonstrate that TETA can be used to chelate Cu and induce Cu-limitation in N. viennensis and that Cu-limited cells retain the ability to oxidize ammonia following Cu addition

Read more

Summary

Objectives

The aim of this study was to identify genes potentially involved in Cu-uptake and to identify physiological and regulatory responses in N. viennensis under Cu-limiting conditions

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.