Abstract

BackgroundMycobacterium bovis is the causative agent of bovine tuberculosis (BTB), a pathological infection with significant economic impact. Recent studies have highlighted the role of functional genomics to better understand the molecular mechanisms governing the host immune response to M. bovis infection. Furthermore, these studies may enable the identification of novel transcriptional markers of BTB that can augment current diagnostic tests and surveillance programmes. In the present study, we have analysed the transcriptome of peripheral blood leukocytes (PBL) from eight M. bovis-infected and eight control non-infected age-matched and sex-matched Holstein-Friesian cattle using the Affymetrix® GeneChip® Bovine Genome Array with 24,072 gene probe sets representing more than 23,000 gene transcripts.ResultsControl and infected animals had similar mean white blood cell counts. However, the mean number of lymphocytes was significantly increased in the infected group relative to the control group (P = 0.001), while the mean number of monocytes was significantly decreased in the BTB group (P = 0.002). Hierarchical clustering analysis using gene expression data from all 5,388 detectable mRNA transcripts unambiguously partitioned the animals according to their disease status. In total, 2,960 gene transcripts were differentially expressed (DE) between the infected and control animal groups (adjusted P-value threshold ≤ 0.05); with the number of gene transcripts showing decreased relative expression (1,563) exceeding those displaying increased relative expression (1,397). Systems analysis using the Ingenuity® Systems Pathway Analysis (IPA) Knowledge Base revealed an over-representation of DE genes involved in the immune response functional category. More specifically, 64.5% of genes in the affects immune response subcategory displayed decreased relative expression levels in the infected animals compared to the control group.ConclusionsThis study demonstrates that genome-wide transcriptional profiling of PBL can distinguish active M. bovis-infected animals from control non-infected animals. Furthermore, the results obtained support previous investigations demonstrating that mycobacterial infection is associated with host transcriptional suppression. These data support the use of transcriptomic technologies to enable the identification of robust, reliable transcriptional markers of active M. bovis infection.

Highlights

  • Mycobacterium bovis is the causative agent of bovine tuberculosis (BTB), a pathological infection with significant economic impact

  • Failure to detect and remove all infected animals from herds is partly due to limitations in the sensitivity of the current diagnostic tests, which often comprise an in vivo single intradermal comparative tuberculin test (SICTT) performed alone, or in combination with an in vitro enzyme-linked immunosorbent assay (ELISA)-based test for interferon gamma (IFN-g)-an established biomarker of mycobacterial infection [4,5,6]

  • The results presented in the current study contribute a novel layer of information regarding the gene expression profile of peripheral blood leukocytes (PBL) from M. bovis-infected animals and highlight the value of high-throughput genomic technologies in understanding the host immune response to BTB

Read more

Summary

Introduction

Mycobacterium bovis is the causative agent of bovine tuberculosis (BTB), a pathological infection with significant economic impact. Recent studies have highlighted the role of functional genomics to better understand the molecular mechanisms governing the host immune response to M. bovis infection. These studies may enable the identification of novel transcriptional markers of BTB that can augment current diagnostic tests and surveillance programmes. Current diagnostics cannot effectively differentiate between M. bovis-infected and BCG-vaccinated animals, compromising management strategies [8]. There is a pressing need for novel M. bovis diagnostic methods with increased sensitivity and specificity

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call